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Abstract-- The process of code generation is chiefly involved 

with three interrelated optimization tasks: instruction 

selection (with resource allocation), instruction scheduling and 

register allocation. For most of the architectures and in most 

situations, these tasks have been discovered to be NP-hard. A 

common approach for code generation includes solving each 

task separately, i.e. in a decoupled manner, which is easier 

from a software-engineering point of view. Phase-decoupled 

compilers generate good code quality for regular 

architectures, but if applied to DSPs the generated code 

results in with significantly lower performance due to strong 

interdependences between the different tasks. Generating 

code for DSPs drives to afford spending considerable 

resources in time and space on optimizations. Generating 

efficient code for irregular architectures requires an 

integrated method that optimizes simultaneously for 

instruction selection, instruction scheduling, and register 

allocation. Moreover, embedded systems have turned a 

prevalent part of our dialy life and this trend is very unlikely 

to decline anytime soon. Traditional superscalar techniques 

require for a 2–3× speedup in performance very roughly 

about an increase of 80× in area and, maybe even more 

important, about 12× in power consumption. For numerous 

mobile applications with critical energy and cost 

requirements, this is a cost too high to bear. As such, the 

generation of code for parallel processing systems has been, 

and remains, an important area of research. The principal 

aim of this thesis is to explore the processes of optimal code 

generation and how they are implemented in parallel 

processors besides elaborating the challenges and possible 

solutions in this arena. 

Keywords-- optimal instruction scheduling, semiconductor 
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I. INTRODUCTION 

The computer industry has grown accustomed to, and 

has come to take for granted, a spectacular rate of increase 

in microprocessor performance, all of this without 

requiring a fundamental rewriting of the program in a 

parallel form, without using a different algorithm or 

language, and often without even recompiling the program. 

Higher levels of performance benefit from 

improvements in semiconductor technology which permit 

shorter gate delays and higher levels of integration, both of 

which enable the construction of faster computer systems. 

Further speedups must come, primarily, from the use of 

some form of parallelism. 

Instruction-level parallelism 

Instruction-level parallelism results from a set of 

processor and compiler design techniques that speed up 

execution by causing individual RISC-style machine 

operations, such as memory loads and stores, integer 

additions and floating point multiplications, to execute in 

parallel. ILP systems are given a conventional high-level 

language program written for sequential processors and use 

compiler technology and hardware to automatically exploit 

program parallelism. Thus an important feature of these 

techniques is that like circuit speed improvements, but 

unlike traditional multiprocessor parallelism and massively 

parallel processing, they are largely transparent to 

application programmers. In the long run, it is clear that the 

multiprocessor style of parallel processing will be an 

important technology for the main stream computer 

industry. For the present, instruction-level parallel 

processing has established itself as the only viable 

approach for achieving the goal of providing continuously 

increasing performance without having to fundamentally 

re-write applications. 

II. MOTIVATION 

There has been substantial progress in the development 

of new methods in code generation for scalar and 

instruction-level parallel processor architectures during the 

last two decades. New retargetable tools for instruction 

selection have emerged, such as IBURG [FHP92, FH95]. 

New methods for fine-grain parallel loop scheduling have 

been developed, such as software pipelining [AN88, 

Lam88].  
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Global scheduling methods like trace scheduling [Fis81, 

Ell85], percolation scheduling [Nic84, EN89], or region 

scheduling [GS90] allow to move instructions across basic 

block boundaries. Also, techniques for speculative or 

predicated execution of conditional branches have been 

developed [HHG+ 95]. Finally, high-level global code 

optimization techniques based on data flow frameworks, 

such as code motion, have been described in [KRS98]. 

Most of the important optimization problems in code 

generation have been found to be NP-complete. Hence, 

these problems are generally solved by heuristics. Global 

register allocation is NP-complete, as it is isomorphic to 

coloring a live-range interference graph [CAC+ 81, Ers71] 

with a minimum number of colors. Time-optimal 

instruction scheduling for basic blocks is NP-complete for 

almost any nontrivial target architecture [AJU77, BRG89, 

HG83, MPSR95, PS93] except for certain combinations of 

very simple tar- get processor architectures and tree-shaped 

dependency structures [BGS93, 

BG89,BJPR85,EGS95,Hu61,KPF95,MD94,PF91]. Space-

optimal instruction scheduling for DAGs is NP-complete 

[BS76, Set75], except for tree-shaped [BGS93, SU70] or 

series-parallel [Güt81] dependency structures. Instruction 

selection for basic blocks with a DAG-shaped data 

dependency structure is assumed to be NP-complete, too, 

and the dynamic programming algorithm designed for (IR) 

trees can no longer guarantee optimality for DAGs, 

especially in the presence of non-homogeneous register sets 

[Ert99]. 

Optimal selection of spill candidates and optimal a-

posteriori insertion of spill code for a given fixed 

instruction sequence and a given number of avail- able 

registers is NP-complete even for basic blocks and has been 

solved by dynamic programming or integer linear 

programming for various special cases of processor 

architecture and dependency structure [AG01, HKMW66, 

HFG89, MD99]. 

For the general case of DAG-structured dependences, 

various algorithms for time-optimal local instruction 

scheduling have been proposed, based on integer linear 

programming e.g. [GE92, Käs00a, WLH00, Zha96], 

branch-and-bound [CC95, HD98, YWL89], and constraint 

logic programming [BL99]. Dynamic programming has 

been used for time-optimal [Veg92] and space- optimal 

[Kes98] local instruction scheduling. 

 

 

 

 

 

 

The task of generating target code from an intermediate 

program representation can be mainly decomposed into the 

interdependent sub-problems of instruction selection, 

instruction scheduling, and register allocation. These sub-

problems span a three-dimensional problem space. Phase- 

decoupled code generators proceed along the edges of the 

cube, while an integrated solution directly follows the 

diagonal, considering all sub-problems simultaneously. 

The first criterion of a compiler is to produce correct 

code, but often correct code is not sufficient. Users expect 

programs to use available hardware re- sources efficiently. 

The current state-of-the-art in writing highly optimized 

applications for irregular architectures offers two 

alternatives. First, writing the applications directly in the 

assembly code for the specific hardware. Often, it is 

possible to automatically generate assembly code for those 

parts of the program that are not critical for the application, 

and only concentrate on the computationally expensive 

parts and write code for them by hand. Next, obtain highly 

optimized libraries from the hardware provider for a given 

target architecture. Then, the work consists in identifying 

parts of the application that may use a given library and call 

it. However, there are few companies that can spend 

sufficient effort in implementing highly optimized general 

purpose libraries that are as well handwritten directly in the 

assembly language by experts. Designing a good library 

may be a difficult task, and it may work only for specific 

application areas. 

With the solutions above it is possible to generate highly 

optimized code but at high cost in terms of man months. 

Further, the code needs to be rewritten almost completely if 

the underlying hardware changes, since the methods are 

rarely portable. In terms of software engineering, 

maintainability is difficult as long as there is no unified 

framework where third-party components can be updated 

more frequently than the application itself. Within this 

work we aim at improving the current state-of-the-art in 

compiler generation for irregular architectures, where the 

user keeps writing applications in a high level language and 

the compiler produces highly optimized code that exploits 

hardware resources efficiently. We focus particularly on 

code generation and aim at producing an optimal code 

sequence for a given IR of an input program. Optimal code 

sequence is of particular interest for fixed applications 

where the requirements are difficult to meet, and often a 

dedicated hardware is required. Furthermore, from the 

hardware designer viewpoint, information about optimal 

code sequence may influence further design decisions. 
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Moreover, we consider the retargetability issue. The 

code generation framework should not encapsulate target 

hardware specific, but take the hardware description as 

input information together with the application specified in 

a high level language. From the hardware description it is 

either possible to generate a compiler (code generator 

generator), or parameterize an existing framework. A code 

generator is usually more difficult to build, thus in this 

thesis we implement a prototype of a parameterizable 

retargetable framework for irregular architectures. 

The advances in the processing speed of current 

microprocessors are caused not only by progress in higher 

integration of silicon components, but also by exploiting an 

increasing degree of instruction-level parallelism in 

programs, technically realized in the form of deeper 

pipelines, more functional units, and a higher instruction 

dispatch rate. Generating efficient code for such processors 

is largely the job of the programmer or the compiler back-

end. Even though most superscalar processors can, within a 

very narrow window of a few subsequent instructions in the 

code, analyze data dependences at runtime, reorder 

instructions, or rename registers internally, efficiency still 

depends on a suitable code sequence. 

III. RESEARCH QUESTION 

The present attempt is going to deal with the processes 

of optimal code generation and their implementation in 

parallel processors. To begin with, it provides an overview 

of architecture of parallel processors. Next it turns its focus 

to code generation for parallel processors and how to 

optimize the process of code generation. So the main 

objectives of this study are- 

1. To provide an overview of architecture of parallel 

processors. 

2. To discuss various compiler design techniques that 

speed up execution by causing individual machine 

operations to execute in parallel.  

3. To evaluate the performance indicators of parallel 

processors in comparison to other processors.  

4. To analyze the applications of parallel processors and 

their impacts and implementation on computing 

world.  

5. To describe the processes of code generation and 

optimization techniques from operations research.  

6. To develop a framework for integrated code 

generation with algorithms to optimally solve the 

main tasks of code generation  

7. To address the problem of overlapping register classes 

as a future work.  

IV. RESEARCH METHODOLOGY 

1 To utilize graphical tools for developing the 

architecture of parallel processors 

2 To utilize various mathematical tools for optimizing 

code generation techniques 

3 Determining how the research is going to be 

conducted 

4 Collection of the research data 

5 Analysis and interpretation of the research data 

6 Writing up of the research paper. 

V. LIMITATIONS OF THE STUDY 

Code generation consists mainly of three interrelated 

optimization tasks: instruction selection (with resource 

allocation), instruction scheduling and register allocation. 

These tasks have been discovered to be NP-hard for most 

architecture and most situations. A common approach to 

code generation consists in solving each task separately, i.e. 

in a decoupled manner, which is easier from a software 

engineering point of view. 

In this research paper, we are going to develop a 

framework for integrated code generation with algorithms 

to optimally solve the main tasks of code generation in a 

single and fully integrated optimization step for regular and 

irregular architectures, using dynamic programming and 

integer linear programming. 

We first provide the concept of time profile and the 

compression theorem for regular architectures. The 

dynamic programming algorithm for superscalar and 

regular VLIW processors is suitable for small and medium-

sized problem instances. Secondly, for irregular 

architectures we introduced the concept of space profiles to 

describe data locality information and provided the 

compression theorem for irregular architectures. The 

dynamic programming algorithm for clustered VLIW 

processors is applicable to small but not trivial problem 

instances. 

The dynamic programming method is suitable for 

optimizing for time, space, energy, and mixed goals. We 

adopt an energy model from the literature and presented a 

framework for energy-optimal integrated local code 

generation. We define a suitable power profile, which is the 

key to considerable compression of the solution space in 

our dynamic programming algorithm. Our method is 

generic and not limited to a fixed power model. If more 

influence factors are to be considered that are known at 

compile time, it can easily be adapted by modifying the 

power profile definition accordingly. 
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In order to address larger problem instances we describe 

an optimization technique that exploits partial symmetries 

for regular architectures. The idea of pruning partial 

solutions that can be shown to be equivalent to others by 

analyzing local symmetries in scheduling situations did not 

lead to substantial improvements because the (moderate) 

size reduction of the solution space was outweighed by the 

symmetry analysis time. Partial-symmetry optimization 

techniques still need further investigations and extensions 

for irregular architectures. 

To begin with, this research paper gives an overview of 

instruction-level parallelism. Under theoritical background, 

it interprets architecture of parallel processors. Then it 

explores and proposes various compiler design techniques. 

It analyzes and critically evaluates performance of parallel 

processors. Next it explores significant applicatoins of 

parallel processors. Code generation and optimization 

techniques are proposed and discussed in detail. Finally it 

concludes with integrated code generation techniques. 

VI. ARCHITECTURE OF PARALLEL PROCESSORS 

Computer architecture is a contract between the class of 

programs that are written for the architecture and the set of 

processor implementations of that architecture. Usually this 

contract is concerned with the instruction format and the 

interpretation of the bits that constitute an instruction, but 

in the case of ILP architectures it extends to information 

embedded in the program pertaining to the available 

parallelism between the instructions or operations in the 

program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 showing Parallel Architectures 

 

 

 

 

 

ILP architectures can be classified as: 

Sequential architectures: architectures for which the 

program is not expected to convey any explicit information 

regarding parallelism. Superscalar processors are 

representative of ILP processor implementations for 

sequential architectures. 

Dependence architectures: architectures for which the 

program explicitly indicates the dependences that exist 

between operations. Dataflow processors ([29-31]) are 

representative of this class. 

Independence architectures: architectures for which the 

program provides information as to which operations are 

independent of one another. Very Long Instruction Word 

(VLIW) processors are examples of the class of 

independence architectures. 

If ILP is to be achieved, between the compiler and the 

runtime hardware, the following functions must be 

performed: the dependences between operations must be 

determined,the operations, that are independent of any 

operation that has not as yet completed, must be 

determined, and these independent operations must be 

scheduled to execute at some particular time, on some 

specific functional unit, and must be assigned a register 

into which the result may be deposited.  

Sequential Architectures and Superscalar Processors  

The program for a sequential architecture contains no 

explicit information regarding the dependences that exist 

between instructions. Consequently, the compiler need 

neither identify parallelism nor make scheduling decisions 

since there is no explicit way to communicate this 

information to the hardware. (It is true, nevertheless, that 

there is value in the compiler performing these functions 

and ordering the instructions so as to facilitate the 

hardware's task of extracting parallelism.) In any event, if 

instruction-level parallelism is to be employed, the 

dependences that exist between instructions must be 

determined by the hardware. It is only necessary to 

determine dependences with sequentially preceding 

operations that are in flight, i.e., those that have been issued 

but have not yet completed. The operation is now 

independent of all other operations and may begin 

execution. At this point, the hardware must make the 

scheduling decision of when and where this operation is to 

execute. 
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A superscalar processor strives to issue an instruction 

every cycle, so as to execute many instructions in parallel, 

even though the hardware is handed a sequential program. 

The problem is that a sequential program is constructed 

with the assumption only that it will execute correctly when 

each instruction waits for the previous one to finish, and 

that is the only order that the architecture guarantees to be 

correct. The first task, then, for a superscalar processor is to 

understand, for each instruction, which other instructions it 

actually is dependent upon. With every instruction that a 

superscalar processor issues, it must check whether the 

instruction's operands (registers or memory locations that 

the instruction uses or modifies) interfere with the operands 

of any other instruction in flight, i.e., one that is either: 

already in execution, or has been issued but is waiting for 

the completion of interfering instructions that would have 

been executed earlier in a sequential execution of the 

program.  

If either of these conditions is true, the instruction in 

question must be delayed until the instructions on which it 

is dependent have completed execution. For each waiting 

operation, these dependences must be monitored to 

determine the point in time at which neither condition is 

true. When this happens, the instruction is independent of 

all other uncompleted instructions and can be allowed to 

begin executing at any time thereafter. In the meantime, the 

processor may begin execution of subsequent instructions 

which prove to be independent of all sequentially 

preceeding instructions in flight. Once an instruction is 

independent of all other ones in flight, the hardware must 

also decide exactly when and on which available functional 

unit to execute the instruction. The Control Data CDC 6600 

employed a mechanism, called the scoreboard, to perform 

these functions. The IBM System/360 Model 91, built in 

the early 1960s, utilized an even more sophisticated method 

known as Tomasulo's Algorithm to carry out these 

functions. 

The further goal of a superscalar processor is to issue 

multiple instructions every cycle. The most problematic 

aspect of so doing is that of determining the dependences 

between the operations that one wishes to issue 

simultaneously. Since the semantics of the program, and in 

particular the essential dependences, are specified by the 

sequential ordering of the operations, the operations must 

be processed in this order to determine the essential 

dependences. This constitutes an unacceptable performance 

bottleneck in a machine that is attempting parallel 

execution. On the other hand, eliminating this bottleneck 

can be very expensive as is always the case when 

attempting to execute an inherently sequential task in 

parallel. 

Independence architectures and VLIW processors  

In order to execute operations in parallel, the system 

must determine that the operations are independent of one 

another. Superscalar processors and dataflow processors 

represent two ways of deriving this information at run-time. 

In the case of the dataflow processor, the explicitly 

provided dependence information is used to determine 

when an instruction may be executed so that it is 

independent of all other concurrently executing 

instructions. The superscalar processor must do the same 

but, since programs for it lack any explicit information, it 

must also first determine the dependences between 

instructions. In contrast, for independence architecture, the 

compiler identifies the parallelism in the program and 

communicates it to the hardware by specifying which 

operations are independent of one another. This 

information is of direct value to the hardware, since it 

knows with no further checking which operations it can 

execute in the same cycle. Unfortunately, for any given 

operation, the number of operations of which it is 

independent is far greater than the number of operations on 

which it is dependent. So, it is impractical to specify all 

independences. Instead, for each operation, independences 

with only a subset of all independent operations (those 

operations that the compiler thinks are the best candidates 

to execute concurrently) are specified. 

By listing operations that could be executed 

simultaneously, code for an independence architecture may 

be very close to the record of execution produced by an 

implementation of that architecture. If the architecture 

additionally requires that programs specify where (on 

which functional unit) and when (in which cycle) the 

operations are executed, then the hardware makes no run-

time decisions at all and the code is virtually identical to 

the desired record of execution. 

The VLIW processors that have been built to date are of 

this type and represent the predominant examples of 

machines with independence architectures. The program 

for a VLIW processor specifies exactly which functional 

unit each operation should be executed on and exactly 

when each operation should be issued so as to be 

independent of all operations that are being issued at the 

same time as well as of those that are in execution.  

A particular processor implementation of VLIW 

architecture could choose to disregard the scheduling 

decisions embedded in the program, making them at run-

time instead. In doing so, the processor would still benefit 

from the independence information but would have to 

perform all of the scheduling tasks of a superscalar 

processor.  
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Furthermore, when attempting to execute concurrently 

two operations that the program did not specify as being 

independent of each other, it must determine independence, 

just as a superscalar processor must. 

With a VLIW processor, it is important to distinguish 

between an instruction and an operation. An operation is a 

unit of computation, such as an addition, memory load or 

branch, which would be referred to as an instruction in the 

context of a sequential architecture. A VLIW instruction is 

the set of operations that are intended to be issued 

simultaneously. It is the task of the compiler to decide 

which operations should go into each instruction. This 

process is termed scheduling. 

Conceptually, the compiler schedules a program by 

emulating at compile-time what a dataflow processor, with 

the same execution hardware, would do at run-time. All 

operations that are supposed to begin at the same time are 

packaged into a single VLIW instruction. 

The order of the operations within the instruction 

specifies the functional unit on which each operation is to 

execute. A VLIW program is a transliteration of a desired 

record of execution which is feasible in the context of the 

given execution hardware. 

The compiler for a VLIW machine specifies that an 

operation be executed speculatively merely by performing 

speculative code motion, that is, scheduling an operation 

before the branch that determines that it should, in fact, be 

executed. At run-time, the VLIW processor blindly 

executes this operation exactly as specified by the program 

just as it would for a non-speculative operation. Speculative 

execution is virtually transparent to the VLIW processor 

and requires little additional hardware. When the compiler 

decides to schedule an operation for speculative execution, 

it can arrange to leave behind enough of the state of the 

computation to assure correct results when the flow of the 

program requires that the operation be ignored. The 

hardware required for the support of speculative code 

motion consists of having some extra registers, of fetching 

some extra instructions, and of suppressing the generation 

of spurious error conditions. 

The VLIW compiler must perform many of the same 

functions that a superscalar processor performs at run-time 

to support speculative execution, but it does so at compile-

time. The earliest VLIW processors built were the so-called 

attached array processors of which the best known were the 

Floating Point Systems products, the AP-120B, the FPS-

164 and the FPS-264. The next generations of products 

were the mini-supercomputers: Multiflow's Trace series of 

machines and Cydrome's Cydra 5 and the Culler machine 

for which, as far as we are aware, there is no published 

description in the literature.  

Over the last few years, the VLIW architecture has 

begun to show up in microprocessors. 

Other types of processors with independence 

architectures have been built or proposed. A superpipelined 

machine may issue only one operation per cycle, but if 

there is no superscalar hardware devoted to preserving the 

correct execution order of operations, the compiler will 

have to schedule them with full knowledge of dependencies 

and latencies. From the compiler's point of view,these 

machines are virtually the same as VLIWs, though the 

hardware design of such a processor offers some tradeoffs 

with respect to VLIWs. Another proposed independence 

archilfCture, dubbed Horizon, encodes an integer H into 

each operation. The architecture guarantees that all of the 

next H operations in the instruction stream are data-

independent of the current operation. All the hardware has 

to do to release an operation, then, is assure itself that no 

more than H subsequent operations are allowed to issue 

before this operation has completed. 

The hardware does all of its own scheduling, unlike 

VLIWs and deeply pipelined machines which rely on the 

compiler, but the hardware is relieved of the task of 

determining data dependence. Below table summarizes the 

comparison of the instruction-level parallel architecture 

types: 
                                  Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 showing the comparison of the instruction-level 

parallel architecture types 
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Below  table  shows  the  summary  of  various  forms  

of parallelism: 

Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 showing the summary of various forms of 

parallelism      

VII. APPLICATION OF PARALLEL PROCESSORS 

The preparation of programs for parallel execution is of 

immense practical importance. We have seen that the 

designs of parallel processing hardware, particularly the 

interconnection architecture, and of parallel algorithms are 

full of challenging problems. As difficult as these problems 

are, the single most important reason for the lack of 

acceptance and limited application of parallel processing is 

neither hardware nor algorithms but rather obscure and 

cumbersome programming models. Since the early 1970s, 

we have witnessed moderate successes with parallelizing 

compilers, which automatically extract parallelism from 

essentially sequential specifications, and with array 

languages such as High-Performance Fortran. However, the 

goal of simple, efficient machine-independent parallel 

programming has remained elusive. 

 

 

VIII. CONCLUSION AND FUTURE RESEARCH 

This research paper has developed a framework for 

integrated code generation with algorithms to optimally 

solve the main tasks of code generation in a single and fully 

integrated optimization step for regular and irregular 

architectures, using dynamic programming and integer 

linear programming. 

It first provided the concept of time profile and the 

compression theorem for regular architectures. The 

dynamic programming algorithm for super-scalar and 

regular VLIW processors is suitable for small and medium-

sized problem instances. Secondly, for irregular 

architectures we introduced the concept of space profiles to 

describe data locality information and provided the 

compression theorem for irregular architectures. The 

dynamic programming algorithm for clustered VLIW 

processors is applicable to small but not trivial problem 

instances. 

Spilling to memory modules is currently not considered, 

as we assume that the register classes have enough capacity 

to hold all values of interest. However, this is no longer 

true for small residence classes, as e.g. in the case of the 

Motorola MC56K. In principle our algorithm is able to 

generate optimal spill code and take this code already into 

account when determining an op- timal schedule. On the 

other hand, taking spill code into consideration may 

considerably increase the space requirements. 

The dynamic programming method is suitable for 

optimizing for time, space, energy, and mixed goals. An 

energy model from the literature has been adopted and 

presented a framework for energy-optimal integrated local 

code generation. A suitable power profile has been defined, 

which is the key to considerable com- pression of the 

solution space in our dynamic programming algorithm. The 

method presented is generic and not limited to a fixed 

power model. If more influence factors are to be considered 

that are known at compile time, it can easily be adapted by 

modifying the power profile definition accordingly. 

In order to address larger problem instances we 

described an optimization technique that exploits partial 

symmetries in DAGs for regular architectures. The idea of 

pruning partial solutions that can be shown to be equivalent 

to others by analyzing local symmetries in scheduling 

situations did not lead to substantial improvements because 

the (moderate) size reduction of the solu-tion space was 

outweighed by the symmetry analysis time. Partial-

symmetry optimization techniques still need further 

investigations and extensions for irregular architectures. 
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Large DAGs require heuristic pruning of the solution 

space to cope with the combinatorial complexity of fully 

integrated code generation. It has been showed that limiting 

the number of alternatives generated from partial solution 

nodes (ESnode) produces code with still high quality in 

much shorter computation times. Further, this thesis 

provided an integer linear programming formula- tion for 

fully integrated code generation for VLIW architectures 

that includes instruction selection, instruction scheduling 

and register allocation. We have implemented the 

generation of data for the ILP model within the OPTIMIST 

framework and compared it to the dynamic programming 

approach. Currently, the ILP formulation lacks support for 

memory dependences and for irregular architecture 

characteristics, such as clustered register files, complex 

pipelines, etc. 

It is intended to extend the formulation as part of future 

work. Finally, we addressed the issue of retargetable code 

generation. An architecture description language called 

xADML has been developed that is based on XML. It 

successfully retargeted the OPTIMIST framework to three 

very different processors: ARM9E a single issue processor, 

TI-C62x a multi-issue clustered VLIW architecture, and 

Motorola MC56K a multi-issue DSP pro- cessor.   As 

future work, it is needed to address the problem of 

overlapping register classes and extend our approach 

beyond local code generation. Some ideas for extending the 

DP approach to software pipelining have been described. 

Spilling to memory modules is currently not considered, as 

we assume that the register classes have enough capacity to 

hold all values of interest. However, this is no longer true 

for small residence classes, as e.g. in the case of the Hitachi 

SH3DSP. The algorithm presented is, in principle, able to 

generate optimal spill code and take this code already into 

account for determining an optimal schedule. On the other 

hand, taking spill code into consideration may considerably 

increase the space requirements. We plan to develop further 

methods for the elimination of uninteresting alternatives. 

Note that our algorithm automatically considers spilling to 

other register classes already now. Large DAGs require 

heuristic pruning of the solution space to cope with the 

combinatorial complexity. This could, for instance, be 

achieved by limiting the number of ESNodes per cell of the 

three-dimensional solution space. We did not yet really 

exploit the option of working with a lattice of residence 

classes that would result from a more general definition of 

residence classes based on the versatility relation. This is 

an issue of future research. In contrast to the limit studies, 

some people have built real or simulated ILP systems, and 

have measured their speedup against real or simulated non-

parallel systems.  

When simulated systems have been involved, they have 

been relatively realistic systems, or systems that the 

researchers have argued would abstract the essence of 

realistic systems in such a way that the system realities 

should not lower the attained parallelism. Thus these 

experiments represent something closer to true lower 

bounds on available parallelism. Ellis used the Bulldog 

Compiler to generate code for a hypothetical machine. His 

model was unrealistic in several aspects, most notably the 

memory system, but realistic implementations should have 

little difficulty exploiting the parallelism he found. Ellis 

measured the speedups obtained on 12 small scientific 

programs for both a "realistic" machine (corresponding to 

one under design at Yale), and an "ideal" machine, with 

limitless hardware and single-cycle functional units. He 

found speedups ranging from no speedup to 7.6 times 

speedup for the real model, and a range of 2.7 to 48.3 for 

the ideal model. In this research paper, there are three 

platforms that add to our understanding of the performance 

of ILP systems. The paper by Hwu, et al. [lGl}, considers 

the effect of a realistic compiler which uses superblock 

scheduling. Lowney, et al. and Schuette and Shen compare 

the performance of the Multiflow Trace 14/300 with 

current microprocessors from MIPs and IBM, respectively. 

Fewer studies have been done to measure the attained 

performance of software pipelining. Wharter et al. consider 

a set of 30 doallioops with branches found in the Perfect 

and SPEC benchmark sets. Relative to a single-issue 

machine without modulo scheduling, they find a 6 times 

speedup on a hypothetical 4-issue machine, 10 times 

speedup on a hypothetical 8-issue machine. Lee, et al., 

combined superblock scheduling and software pipelining 

for a machine capable of issuing up to 7 operations per 

cycle. On a mix of loop-intensive (e.g., LINPACK) and 

"scalar" (e.g., Spice) codes, they found an average of 1-4 

operations issued per cycle, with 2-7 operations in flight. 

We hope that this research paper will help in shaping 

future research of processor systems by providing a more 

concise view and problem definition, design requirements 

and constraints, and suggestions for possible research 

directions. 
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