

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

138

The process of Optimal Code Generation and its

implementation in Parallel Processors
A. Alekhya, M.Tech.(CSE)1, Prof. Dr. G. Manoj Someswar, Ph.D.

2

1
Research Scholar at Pacific University, Udaipur, Rajasthan, India.

2
Professor & Research Supervisor, Pacific University, Udaipur, Rajasthan, India.

Abstract-- The process of code generation is chiefly involved

with three interrelated optimization tasks: instruction

selection (with resource allocation), instruction scheduling and

register allocation. For most of the architectures and in most

situations, these tasks have been discovered to be NP-hard. A

common approach for code generation includes solving each

task separately, i.e. in a decoupled manner, which is easier

from a software-engineering point of view. Phase-decoupled

compilers generate good code quality for regular

architectures, but if applied to DSPs the generated code

results in with significantly lower performance due to strong

interdependences between the different tasks. Generating

code for DSPs drives to afford spending considerable

resources in time and space on optimizations. Generating

efficient code for irregular architectures requires an

integrated method that optimizes simultaneously for

instruction selection, instruction scheduling, and register

allocation. Moreover, embedded systems have turned a

prevalent part of our dialy life and this trend is very unlikely

to decline anytime soon. Traditional superscalar techniques

require for a 2–3× speedup in performance very roughly

about an increase of 80× in area and, maybe even more

important, about 12× in power consumption. For numerous

mobile applications with critical energy and cost

requirements, this is a cost too high to bear. As such, the

generation of code for parallel processing systems has been,

and remains, an important area of research. The principal

aim of this thesis is to explore the processes of optimal code

generation and how they are implemented in parallel

processors besides elaborating the challenges and possible

solutions in this arena.

Keywords-- optimal instruction scheduling, semiconductor

technology, parallel processing, code generation framework,

ILP architecture

I. INTRODUCTION

The computer industry has grown accustomed to, and

has come to take for granted, a spectacular rate of increase

in microprocessor performance, all of this without

requiring a fundamental rewriting of the program in a

parallel form, without using a different algorithm or

language, and often without even recompiling the program.

Higher levels of performance benefit from

improvements in semiconductor technology which permit

shorter gate delays and higher levels of integration, both of

which enable the construction of faster computer systems.

Further speedups must come, primarily, from the use of

some form of parallelism.

Instruction-level parallelism

Instruction-level parallelism results from a set of

processor and compiler design techniques that speed up

execution by causing individual RISC-style machine

operations, such as memory loads and stores, integer

additions and floating point multiplications, to execute in

parallel. ILP systems are given a conventional high-level

language program written for sequential processors and use

compiler technology and hardware to automatically exploit

program parallelism. Thus an important feature of these

techniques is that like circuit speed improvements, but

unlike traditional multiprocessor parallelism and massively

parallel processing, they are largely transparent to

application programmers. In the long run, it is clear that the

multiprocessor style of parallel processing will be an

important technology for the main stream computer

industry. For the present, instruction-level parallel

processing has established itself as the only viable

approach for achieving the goal of providing continuously

increasing performance without having to fundamentally

re-write applications.

II. MOTIVATION

There has been substantial progress in the development

of new methods in code generation for scalar and

instruction-level parallel processor architectures during the

last two decades. New retargetable tools for instruction

selection have emerged, such as IBURG [FHP92, FH95].

New methods for fine-grain parallel loop scheduling have

been developed, such as software pipelining [AN88,

Lam88].

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

139

Global scheduling methods like trace scheduling [Fis81,

Ell85], percolation scheduling [Nic84, EN89], or region

scheduling [GS90] allow to move instructions across basic

block boundaries. Also, techniques for speculative or

predicated execution of conditional branches have been

developed [HHG+ 95]. Finally, high-level global code

optimization techniques based on data flow frameworks,

such as code motion, have been described in [KRS98].

Most of the important optimization problems in code

generation have been found to be NP-complete. Hence,

these problems are generally solved by heuristics. Global

register allocation is NP-complete, as it is isomorphic to

coloring a live-range interference graph [CAC+ 81, Ers71]

with a minimum number of colors. Time-optimal

instruction scheduling for basic blocks is NP-complete for

almost any nontrivial target architecture [AJU77, BRG89,

HG83, MPSR95, PS93] except for certain combinations of

very simple tar- get processor architectures and tree-shaped

dependency structures [BGS93,

BG89,BJPR85,EGS95,Hu61,KPF95,MD94,PF91]. Space-

optimal instruction scheduling for DAGs is NP-complete

[BS76, Set75], except for tree-shaped [BGS93, SU70] or

series-parallel [Güt81] dependency structures. Instruction

selection for basic blocks with a DAG-shaped data

dependency structure is assumed to be NP-complete, too,

and the dynamic programming algorithm designed for (IR)

trees can no longer guarantee optimality for DAGs,

especially in the presence of non-homogeneous register sets

[Ert99].

Optimal selection of spill candidates and optimal a-

posteriori insertion of spill code for a given fixed

instruction sequence and a given number of avail- able

registers is NP-complete even for basic blocks and has been

solved by dynamic programming or integer linear

programming for various special cases of processor

architecture and dependency structure [AG01, HKMW66,

HFG89, MD99].

For the general case of DAG-structured dependences,

various algorithms for time-optimal local instruction

scheduling have been proposed, based on integer linear

programming e.g. [GE92, Käs00a, WLH00, Zha96],

branch-and-bound [CC95, HD98, YWL89], and constraint

logic programming [BL99]. Dynamic programming has

been used for time-optimal [Veg92] and space- optimal

[Kes98] local instruction scheduling.

The task of generating target code from an intermediate

program representation can be mainly decomposed into the

interdependent sub-problems of instruction selection,

instruction scheduling, and register allocation. These sub-

problems span a three-dimensional problem space. Phase-

decoupled code generators proceed along the edges of the

cube, while an integrated solution directly follows the

diagonal, considering all sub-problems simultaneously.

The first criterion of a compiler is to produce correct

code, but often correct code is not sufficient. Users expect

programs to use available hardware re- sources efficiently.

The current state-of-the-art in writing highly optimized

applications for irregular architectures offers two

alternatives. First, writing the applications directly in the

assembly code for the specific hardware. Often, it is

possible to automatically generate assembly code for those

parts of the program that are not critical for the application,

and only concentrate on the computationally expensive

parts and write code for them by hand. Next, obtain highly

optimized libraries from the hardware provider for a given

target architecture. Then, the work consists in identifying

parts of the application that may use a given library and call

it. However, there are few companies that can spend

sufficient effort in implementing highly optimized general

purpose libraries that are as well handwritten directly in the

assembly language by experts. Designing a good library

may be a difficult task, and it may work only for specific

application areas.

With the solutions above it is possible to generate highly

optimized code but at high cost in terms of man months.

Further, the code needs to be rewritten almost completely if

the underlying hardware changes, since the methods are

rarely portable. In terms of software engineering,

maintainability is difficult as long as there is no unified

framework where third-party components can be updated

more frequently than the application itself. Within this

work we aim at improving the current state-of-the-art in

compiler generation for irregular architectures, where the

user keeps writing applications in a high level language and

the compiler produces highly optimized code that exploits

hardware resources efficiently. We focus particularly on

code generation and aim at producing an optimal code

sequence for a given IR of an input program. Optimal code

sequence is of particular interest for fixed applications

where the requirements are difficult to meet, and often a

dedicated hardware is required. Furthermore, from the

hardware designer viewpoint, information about optimal

code sequence may influence further design decisions.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

140

Moreover, we consider the retargetability issue. The

code generation framework should not encapsulate target

hardware specific, but take the hardware description as

input information together with the application specified in

a high level language. From the hardware description it is

either possible to generate a compiler (code generator

generator), or parameterize an existing framework. A code

generator is usually more difficult to build, thus in this

thesis we implement a prototype of a parameterizable

retargetable framework for irregular architectures.

The advances in the processing speed of current

microprocessors are caused not only by progress in higher

integration of silicon components, but also by exploiting an

increasing degree of instruction-level parallelism in

programs, technically realized in the form of deeper

pipelines, more functional units, and a higher instruction

dispatch rate. Generating efficient code for such processors

is largely the job of the programmer or the compiler back-

end. Even though most superscalar processors can, within a

very narrow window of a few subsequent instructions in the

code, analyze data dependences at runtime, reorder

instructions, or rename registers internally, efficiency still

depends on a suitable code sequence.

III. RESEARCH QUESTION

The present attempt is going to deal with the processes

of optimal code generation and their implementation in

parallel processors. To begin with, it provides an overview

of architecture of parallel processors. Next it turns its focus

to code generation for parallel processors and how to

optimize the process of code generation. So the main

objectives of this study are-

1. To provide an overview of architecture of parallel

processors.

2. To discuss various compiler design techniques that

speed up execution by causing individual machine

operations to execute in parallel.

3. To evaluate the performance indicators of parallel

processors in comparison to other processors.

4. To analyze the applications of parallel processors and

their impacts and implementation on computing

world.

5. To describe the processes of code generation and

optimization techniques from operations research.

6. To develop a framework for integrated code

generation with algorithms to optimally solve the

main tasks of code generation

7. To address the problem of overlapping register classes

as a future work.

IV. RESEARCH METHODOLOGY

1 To utilize graphical tools for developing the

architecture of parallel processors

2 To utilize various mathematical tools for optimizing

code generation techniques

3 Determining how the research is going to be

conducted

4 Collection of the research data

5 Analysis and interpretation of the research data

6 Writing up of the research paper.

V. LIMITATIONS OF THE STUDY

Code generation consists mainly of three interrelated

optimization tasks: instruction selection (with resource

allocation), instruction scheduling and register allocation.

These tasks have been discovered to be NP-hard for most

architecture and most situations. A common approach to

code generation consists in solving each task separately, i.e.

in a decoupled manner, which is easier from a software

engineering point of view.

In this research paper, we are going to develop a

framework for integrated code generation with algorithms

to optimally solve the main tasks of code generation in a

single and fully integrated optimization step for regular and

irregular architectures, using dynamic programming and

integer linear programming.

We first provide the concept of time profile and the

compression theorem for regular architectures. The

dynamic programming algorithm for superscalar and

regular VLIW processors is suitable for small and medium-

sized problem instances. Secondly, for irregular

architectures we introduced the concept of space profiles to

describe data locality information and provided the

compression theorem for irregular architectures. The

dynamic programming algorithm for clustered VLIW

processors is applicable to small but not trivial problem

instances.

The dynamic programming method is suitable for

optimizing for time, space, energy, and mixed goals. We

adopt an energy model from the literature and presented a

framework for energy-optimal integrated local code

generation. We define a suitable power profile, which is the

key to considerable compression of the solution space in

our dynamic programming algorithm. Our method is

generic and not limited to a fixed power model. If more

influence factors are to be considered that are known at

compile time, it can easily be adapted by modifying the

power profile definition accordingly.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

141

In order to address larger problem instances we describe

an optimization technique that exploits partial symmetries

for regular architectures. The idea of pruning partial

solutions that can be shown to be equivalent to others by

analyzing local symmetries in scheduling situations did not

lead to substantial improvements because the (moderate)

size reduction of the solution space was outweighed by the

symmetry analysis time. Partial-symmetry optimization

techniques still need further investigations and extensions

for irregular architectures.

To begin with, this research paper gives an overview of

instruction-level parallelism. Under theoritical background,

it interprets architecture of parallel processors. Then it

explores and proposes various compiler design techniques.

It analyzes and critically evaluates performance of parallel

processors. Next it explores significant applicatoins of

parallel processors. Code generation and optimization

techniques are proposed and discussed in detail. Finally it

concludes with integrated code generation techniques.

VI. ARCHITECTURE OF PARALLEL PROCESSORS

Computer architecture is a contract between the class of

programs that are written for the architecture and the set of

processor implementations of that architecture. Usually this

contract is concerned with the instruction format and the

interpretation of the bits that constitute an instruction, but

in the case of ILP architectures it extends to information

embedded in the program pertaining to the available

parallelism between the instructions or operations in the

program.

Figure 1 showing Parallel Architectures

ILP architectures can be classified as:

Sequential architectures: architectures for which the

program is not expected to convey any explicit information

regarding parallelism. Superscalar processors are

representative of ILP processor implementations for

sequential architectures.

Dependence architectures: architectures for which the

program explicitly indicates the dependences that exist

between operations. Dataflow processors ([29-31]) are

representative of this class.

Independence architectures: architectures for which the

program provides information as to which operations are

independent of one another. Very Long Instruction Word

(VLIW) processors are examples of the class of

independence architectures.

If ILP is to be achieved, between the compiler and the

runtime hardware, the following functions must be

performed: the dependences between operations must be

determined,the operations, that are independent of any

operation that has not as yet completed, must be

determined, and these independent operations must be

scheduled to execute at some particular time, on some

specific functional unit, and must be assigned a register

into which the result may be deposited.

Sequential Architectures and Superscalar Processors

The program for a sequential architecture contains no

explicit information regarding the dependences that exist

between instructions. Consequently, the compiler need

neither identify parallelism nor make scheduling decisions

since there is no explicit way to communicate this

information to the hardware. (It is true, nevertheless, that

there is value in the compiler performing these functions

and ordering the instructions so as to facilitate the

hardware's task of extracting parallelism.) In any event, if

instruction-level parallelism is to be employed, the

dependences that exist between instructions must be

determined by the hardware. It is only necessary to

determine dependences with sequentially preceding

operations that are in flight, i.e., those that have been issued

but have not yet completed. The operation is now

independent of all other operations and may begin

execution. At this point, the hardware must make the

scheduling decision of when and where this operation is to

execute.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

142

A superscalar processor strives to issue an instruction

every cycle, so as to execute many instructions in parallel,

even though the hardware is handed a sequential program.

The problem is that a sequential program is constructed

with the assumption only that it will execute correctly when

each instruction waits for the previous one to finish, and

that is the only order that the architecture guarantees to be

correct. The first task, then, for a superscalar processor is to

understand, for each instruction, which other instructions it

actually is dependent upon. With every instruction that a

superscalar processor issues, it must check whether the

instruction's operands (registers or memory locations that

the instruction uses or modifies) interfere with the operands

of any other instruction in flight, i.e., one that is either:

already in execution, or has been issued but is waiting for

the completion of interfering instructions that would have

been executed earlier in a sequential execution of the

program.

If either of these conditions is true, the instruction in

question must be delayed until the instructions on which it

is dependent have completed execution. For each waiting

operation, these dependences must be monitored to

determine the point in time at which neither condition is

true. When this happens, the instruction is independent of

all other uncompleted instructions and can be allowed to

begin executing at any time thereafter. In the meantime, the

processor may begin execution of subsequent instructions

which prove to be independent of all sequentially

preceeding instructions in flight. Once an instruction is

independent of all other ones in flight, the hardware must

also decide exactly when and on which available functional

unit to execute the instruction. The Control Data CDC 6600

employed a mechanism, called the scoreboard, to perform

these functions. The IBM System/360 Model 91, built in

the early 1960s, utilized an even more sophisticated method

known as Tomasulo's Algorithm to carry out these

functions.

The further goal of a superscalar processor is to issue

multiple instructions every cycle. The most problematic

aspect of so doing is that of determining the dependences

between the operations that one wishes to issue

simultaneously. Since the semantics of the program, and in

particular the essential dependences, are specified by the

sequential ordering of the operations, the operations must

be processed in this order to determine the essential

dependences. This constitutes an unacceptable performance

bottleneck in a machine that is attempting parallel

execution. On the other hand, eliminating this bottleneck

can be very expensive as is always the case when

attempting to execute an inherently sequential task in

parallel.

Independence architectures and VLIW processors

In order to execute operations in parallel, the system

must determine that the operations are independent of one

another. Superscalar processors and dataflow processors

represent two ways of deriving this information at run-time.

In the case of the dataflow processor, the explicitly

provided dependence information is used to determine

when an instruction may be executed so that it is

independent of all other concurrently executing

instructions. The superscalar processor must do the same

but, since programs for it lack any explicit information, it

must also first determine the dependences between

instructions. In contrast, for independence architecture, the

compiler identifies the parallelism in the program and

communicates it to the hardware by specifying which

operations are independent of one another. This

information is of direct value to the hardware, since it

knows with no further checking which operations it can

execute in the same cycle. Unfortunately, for any given

operation, the number of operations of which it is

independent is far greater than the number of operations on

which it is dependent. So, it is impractical to specify all

independences. Instead, for each operation, independences

with only a subset of all independent operations (those

operations that the compiler thinks are the best candidates

to execute concurrently) are specified.

By listing operations that could be executed

simultaneously, code for an independence architecture may

be very close to the record of execution produced by an

implementation of that architecture. If the architecture

additionally requires that programs specify where (on

which functional unit) and when (in which cycle) the

operations are executed, then the hardware makes no run-

time decisions at all and the code is virtually identical to

the desired record of execution.

The VLIW processors that have been built to date are of

this type and represent the predominant examples of

machines with independence architectures. The program

for a VLIW processor specifies exactly which functional

unit each operation should be executed on and exactly

when each operation should be issued so as to be

independent of all operations that are being issued at the

same time as well as of those that are in execution.

A particular processor implementation of VLIW

architecture could choose to disregard the scheduling

decisions embedded in the program, making them at run-

time instead. In doing so, the processor would still benefit

from the independence information but would have to

perform all of the scheduling tasks of a superscalar

processor.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

143

Furthermore, when attempting to execute concurrently

two operations that the program did not specify as being

independent of each other, it must determine independence,

just as a superscalar processor must.

With a VLIW processor, it is important to distinguish

between an instruction and an operation. An operation is a

unit of computation, such as an addition, memory load or

branch, which would be referred to as an instruction in the

context of a sequential architecture. A VLIW instruction is

the set of operations that are intended to be issued

simultaneously. It is the task of the compiler to decide

which operations should go into each instruction. This

process is termed scheduling.

Conceptually, the compiler schedules a program by

emulating at compile-time what a dataflow processor, with

the same execution hardware, would do at run-time. All

operations that are supposed to begin at the same time are

packaged into a single VLIW instruction.

The order of the operations within the instruction

specifies the functional unit on which each operation is to

execute. A VLIW program is a transliteration of a desired

record of execution which is feasible in the context of the

given execution hardware.

The compiler for a VLIW machine specifies that an

operation be executed speculatively merely by performing

speculative code motion, that is, scheduling an operation

before the branch that determines that it should, in fact, be

executed. At run-time, the VLIW processor blindly

executes this operation exactly as specified by the program

just as it would for a non-speculative operation. Speculative

execution is virtually transparent to the VLIW processor

and requires little additional hardware. When the compiler

decides to schedule an operation for speculative execution,

it can arrange to leave behind enough of the state of the

computation to assure correct results when the flow of the

program requires that the operation be ignored. The

hardware required for the support of speculative code

motion consists of having some extra registers, of fetching

some extra instructions, and of suppressing the generation

of spurious error conditions.

The VLIW compiler must perform many of the same

functions that a superscalar processor performs at run-time

to support speculative execution, but it does so at compile-

time. The earliest VLIW processors built were the so-called

attached array processors of which the best known were the

Floating Point Systems products, the AP-120B, the FPS-

164 and the FPS-264. The next generations of products

were the mini-supercomputers: Multiflow's Trace series of

machines and Cydrome's Cydra 5 and the Culler machine

for which, as far as we are aware, there is no published

description in the literature.

Over the last few years, the VLIW architecture has

begun to show up in microprocessors.

Other types of processors with independence

architectures have been built or proposed. A superpipelined

machine may issue only one operation per cycle, but if

there is no superscalar hardware devoted to preserving the

correct execution order of operations, the compiler will

have to schedule them with full knowledge of dependencies

and latencies. From the compiler's point of view,these

machines are virtually the same as VLIWs, though the

hardware design of such a processor offers some tradeoffs

with respect to VLIWs. Another proposed independence

archilfCture, dubbed Horizon, encodes an integer H into

each operation. The architecture guarantees that all of the

next H operations in the instruction stream are data-

independent of the current operation. All the hardware has

to do to release an operation, then, is assure itself that no

more than H subsequent operations are allowed to issue

before this operation has completed.

The hardware does all of its own scheduling, unlike

VLIWs and deeply pipelined machines which rely on the

compiler, but the hardware is relieved of the task of

determining data dependence. Below table summarizes the

comparison of the instruction-level parallel architecture

types:
 Table 1

Table 1 showing the comparison of the instruction-level

parallel architecture types

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

144

Below table shows the summary of various forms

of parallelism:

Table 2

Table 2 showing the summary of various forms of

parallelism

VII. APPLICATION OF PARALLEL PROCESSORS

The preparation of programs for parallel execution is of

immense practical importance. We have seen that the

designs of parallel processing hardware, particularly the

interconnection architecture, and of parallel algorithms are

full of challenging problems. As difficult as these problems

are, the single most important reason for the lack of

acceptance and limited application of parallel processing is

neither hardware nor algorithms but rather obscure and

cumbersome programming models. Since the early 1970s,

we have witnessed moderate successes with parallelizing

compilers, which automatically extract parallelism from

essentially sequential specifications, and with array

languages such as High-Performance Fortran. However, the

goal of simple, efficient machine-independent parallel

programming has remained elusive.

VIII. CONCLUSION AND FUTURE RESEARCH

This research paper has developed a framework for

integrated code generation with algorithms to optimally

solve the main tasks of code generation in a single and fully

integrated optimization step for regular and irregular

architectures, using dynamic programming and integer

linear programming.

It first provided the concept of time profile and the

compression theorem for regular architectures. The

dynamic programming algorithm for super-scalar and

regular VLIW processors is suitable for small and medium-

sized problem instances. Secondly, for irregular

architectures we introduced the concept of space profiles to

describe data locality information and provided the

compression theorem for irregular architectures. The

dynamic programming algorithm for clustered VLIW

processors is applicable to small but not trivial problem

instances.

Spilling to memory modules is currently not considered,

as we assume that the register classes have enough capacity

to hold all values of interest. However, this is no longer

true for small residence classes, as e.g. in the case of the

Motorola MC56K. In principle our algorithm is able to

generate optimal spill code and take this code already into

account when determining an op- timal schedule. On the

other hand, taking spill code into consideration may

considerably increase the space requirements.

The dynamic programming method is suitable for

optimizing for time, space, energy, and mixed goals. An

energy model from the literature has been adopted and

presented a framework for energy-optimal integrated local

code generation. A suitable power profile has been defined,

which is the key to considerable com- pression of the

solution space in our dynamic programming algorithm. The

method presented is generic and not limited to a fixed

power model. If more influence factors are to be considered

that are known at compile time, it can easily be adapted by

modifying the power profile definition accordingly.

In order to address larger problem instances we

described an optimization technique that exploits partial

symmetries in DAGs for regular architectures. The idea of

pruning partial solutions that can be shown to be equivalent

to others by analyzing local symmetries in scheduling

situations did not lead to substantial improvements because

the (moderate) size reduction of the solu-tion space was

outweighed by the symmetry analysis time. Partial-

symmetry optimization techniques still need further

investigations and extensions for irregular architectures.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

145

Large DAGs require heuristic pruning of the solution

space to cope with the combinatorial complexity of fully

integrated code generation. It has been showed that limiting

the number of alternatives generated from partial solution

nodes (ESnode) produces code with still high quality in

much shorter computation times. Further, this thesis

provided an integer linear programming formula- tion for

fully integrated code generation for VLIW architectures

that includes instruction selection, instruction scheduling

and register allocation. We have implemented the

generation of data for the ILP model within the OPTIMIST

framework and compared it to the dynamic programming

approach. Currently, the ILP formulation lacks support for

memory dependences and for irregular architecture

characteristics, such as clustered register files, complex

pipelines, etc.

It is intended to extend the formulation as part of future

work. Finally, we addressed the issue of retargetable code

generation. An architecture description language called

xADML has been developed that is based on XML. It

successfully retargeted the OPTIMIST framework to three

very different processors: ARM9E a single issue processor,

TI-C62x a multi-issue clustered VLIW architecture, and

Motorola MC56K a multi-issue DSP pro- cessor. As

future work, it is needed to address the problem of

overlapping register classes and extend our approach

beyond local code generation. Some ideas for extending the

DP approach to software pipelining have been described.

Spilling to memory modules is currently not considered, as

we assume that the register classes have enough capacity to

hold all values of interest. However, this is no longer true

for small residence classes, as e.g. in the case of the Hitachi

SH3DSP. The algorithm presented is, in principle, able to

generate optimal spill code and take this code already into

account for determining an optimal schedule. On the other

hand, taking spill code into consideration may considerably

increase the space requirements. We plan to develop further

methods for the elimination of uninteresting alternatives.

Note that our algorithm automatically considers spilling to

other register classes already now. Large DAGs require

heuristic pruning of the solution space to cope with the

combinatorial complexity. This could, for instance, be

achieved by limiting the number of ESNodes per cell of the

three-dimensional solution space. We did not yet really

exploit the option of working with a lattice of residence

classes that would result from a more general definition of

residence classes based on the versatility relation. This is

an issue of future research. In contrast to the limit studies,

some people have built real or simulated ILP systems, and

have measured their speedup against real or simulated non-

parallel systems.

When simulated systems have been involved, they have

been relatively realistic systems, or systems that the

researchers have argued would abstract the essence of

realistic systems in such a way that the system realities

should not lower the attained parallelism. Thus these

experiments represent something closer to true lower

bounds on available parallelism. Ellis used the Bulldog

Compiler to generate code for a hypothetical machine. His

model was unrealistic in several aspects, most notably the

memory system, but realistic implementations should have

little difficulty exploiting the parallelism he found. Ellis

measured the speedups obtained on 12 small scientific

programs for both a "realistic" machine (corresponding to

one under design at Yale), and an "ideal" machine, with

limitless hardware and single-cycle functional units. He

found speedups ranging from no speedup to 7.6 times

speedup for the real model, and a range of 2.7 to 48.3 for

the ideal model. In this research paper, there are three

platforms that add to our understanding of the performance

of ILP systems. The paper by Hwu, et al. [lGl}, considers

the effect of a realistic compiler which uses superblock

scheduling. Lowney, et al. and Schuette and Shen compare

the performance of the Multiflow Trace 14/300 with

current microprocessors from MIPs and IBM, respectively.

Fewer studies have been done to measure the attained

performance of software pipelining. Wharter et al. consider

a set of 30 doallioops with branches found in the Perfect

and SPEC benchmark sets. Relative to a single-issue

machine without modulo scheduling, they find a 6 times

speedup on a hypothetical 4-issue machine, 10 times

speedup on a hypothetical 8-issue machine. Lee, et al.,

combined superblock scheduling and software pipelining

for a machine capable of issuing up to 7 operations per

cycle. On a mix of loop-intensive (e.g., LINPACK) and

"scalar" (e.g., Spice) codes, they found an average of 1-4

operations issued per cycle, with 2-7 operations in flight.

We hope that this research paper will help in shaping

future research of processor systems by providing a more

concise view and problem definition, design requirements

and constraints, and suggestions for possible research

directions.

REFERENCES

[1] C. V. Ramamoorthy and M. J. Gonzalez. A survey of techniques for

recognizing parallel processable streams in computer programs.

Proc. AFIPS Fall Joint Computin2 Conference (1969).

[2] S. Jain. Circular scheduling: a new technique to perform software

pipelining. Proc, ACM SIGPLAN '91 Conference on Pro~rammin2

Lan~ua~e Desi~n and Implementation (June 1991).

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 2, February 2014)

146

[3] 193, M. Smotherman, S. Krishnamurthy, P. S. Aravind and D.

Hunnicutt. Efficient DAG construction and heuristic calculation for

instruction scheduling. Proc. 24th Annual International Workshop
on MicrQarchitecure (Albuquerque, New Mexico, November 1991).

[4] S. Ramakrishnan. Software pipelining in PA-RISC compilers.
Hewlett-Packard Journal (July 1992).

[5] R. Sethi and J. D. Ullman. The generation of optimal code for

arithmetic expressions, JQurnal Qfthe ACM 17 (October 1970).

[6] Bengt Johnsson, Bertil Andersson: The Human- Computer Interface

in Commercial Systems, 1981, ISBN 91-7372-414-9.

[7] H. Jan Komorowski: A Specification of an Ab- stract Prolog

Machine and its Application to Partial Evaluation, 1981, ISBN 91-

7372-479-3.

[8] René Reboh: Knowledge Engineering Techniques and Tools for

Expert Systems, 1981, ISBN 91- 7372-489-0. 222

[9] Östen Oskarsson: Mechanisms of Modifiability in large Software

Systems, 1982, ISBN 91-7372-527- 7.

[10] Hans Lunell: Code Generator Writing Systems, 1983, ISBN 91-

7372-652-4.

[11] Andrzej Lingas: Advances in Minimum Weight Triangulation, 1983,
ISBN 91-7372-660-5.

[12] Peter Fritzson: Towards a Distributed Programming Environment

based on Incremental Compila- tion,1984, ISBN 91-7372-801-2.

[13] The raw data and more information is available at the follow- ing

two URLs:. http://www.pdl.cmu.edu/FailureData/ and

http://www.lanl.gov/projects/computerscience/data, 2006.

[14] X. Castillo and D. Siewiorek. Workload, performance, and reliability

of digital computing systems. In FTCS-11, 1981.

[15] J. Gray. Why do computers stop and what can be done about it. In

Proc. of the 5th Symp. on Reliability in Distributed Software and

Database Systems, 1986.

[16] J. Gray. A census of tandem system availability between 1985 and

1990. IEEE Trans. on Reliability, 39(4), 1990.

[17] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster

availability using workstation validation. In Proc. of ACM

SIGMETRICS, 2002.

[18] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and

modeling of computer reliability as affected by system activity.

ACM Trans. Comput. Syst., 4(3), 1986.

