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Abstract— Modern hybrid campaigns coordinating the 

cyber, physical, and cognitive (CPC) attack vectors have been 

facilitated by offensive integration of artificial intelligence 

(AI) (Ostreni, 2021). These cross-domain operations exploit 

the seams between traditionally siloed defensive postures, 

undermining critical infrastructure and sociopolitical 

stability. The given paper presents SHIELD (Strategic 

Hybrid-incident Early-warning and Layered Defense) as a 

unified AI infrastructure that is capable of automatically 

identifying, correlating, and setting boundaries to the next 

generation CPC attacks. SHIELD contributes in three main 

technical ways, namely (1) Multimodal Context-Aware 

Deepfake Detection (M-CADD), which is a pipeline that 

integrates an active semantic claims-based and passive 

contextual fact-verification probing against repositories of 

trusted knowledge to detect linguistic anomalies in synthetic 

media, with an accuracy rate of 94.3% due to simulated 

influence operations; (2) Resilient Control System Immune 

Learning (RCS-IL), a reinforcement learning (RL) agent 

trained in a high-fidelity digital twin environment to maintain 

operational stability under stealthy, multi-stage attacks, 

reducing impact severity by 78% compared to signature-

based defenses; and (3) Cross-Domain Hybrid Attack Graph 

Engine (C-HAGE), a probabilistic graphical model that fuses 

sociotechnical, cyber, and physical sensor data to reconstruct 

adversarial kill chains, predicting next-stage attack actions 

with 82% precision. The effectiveness of the framework is 

supported by simulation on industrial control systems (ICS) 

and disinformation testbeds, demonstrating that fused, cross-

domain AI is critical for mitigating the compounded risks of 

hybrid threats.  
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I. INTRODUCTION 

The antagonistic implementation of AI has signaled a 

paradigm shift in threat models, which has shifted towards 

multi-domain intrusions to Hybrid Cyber-Physical-

Cognitive (CPC) campaigns (Chesney & Citron, 2023). 

The synergistic effect on these operations is such that 

cognitive disinformation compromises the organization's 

vigilance in order to facilitate accuracy in cyber-physical 

exploitation (Sholademi, 2024).  

 

Defensive fragmentation—where security operations 

centers (SOCs), physical security teams, and information 

integrity units operate in isolation—creates exploitable 

seams. 

The hypothesis of the current paper assumes that 

successful defense needs an equally incorporated AI 

structure. We introduce the SHIELD framework to respond 

to the overall study question: How can multimodal AI 

methods, when applied in fusion, autonomously correlate 

and alleviate tri-domain hybrid attacks? SHIELD helps add 

three new technical functions, focusing on critical points of 

the CPC model, to allow predictive threat intelligence and 

automated response. 

II. RELATED WORK 

• Synthetic Media Detection: The existing SOTA 

approaches use low-level artifact detection (e.g., spectral 

anomalies, inconsistent generative adversarial network 

footprint), which cannot resist diffusion-based models 

(Zheng et al., 2025; Lai et al., 2025) and neglect artificially 

congruent semantic-contextual inconsistencies (Chi et al., 

2025; Li et al., 2025). Some of the recent solutions involve 

cross-modal communication and contextual fusion (He et 

al., 2025). 

• ICS Security: Older methods, like protocol whitelisting 

and shallow anomaly detection, cannot work against false 

data injection (FDI) on AI-generated false data attacks, 

which honor system dynamics (Giraldo et al., 2023). 

Digital twins are typically applied to simulation, but the use 

of digital twins in training adaptive RL-based defense 

agents has been poorly studied (Bak et al., 2025; Tang et 

al., 2025). 

• Cross-Domain Threat Intelligence: Attack graphs are 

useful in modelling network penetration of IT networks, 

but do not include sociotechnical and physical sensor data 

(Mittal et al., 2024; Qiu et al., 2024). Even though the 

method of heterogeneous graph neural network is shown to 

be beneficial in terms of both temporal intrusion detection ( 

King et al., 2023) and analyzing APT campaigns (Bahar et 

al., 2025), it is yet to be applied to real-time CPC fusion 

(Wang et al., 2024). 
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III. SHIELD ARCHITECTURAL REVIEW 

SHIELD uses a multi-agent, federated architecture. 

There are three fundamental AI engines, and they are M-

CADD, RCS-IL, and C-HAGE, which are used in their 

specific domains (cognitive, physical, cyber). An enterprise 

Fusion & Orchestration Controller (FOC) provides alert 

correlation and contextual, enriching services, and 

orchestrates mitigative activity across domains with a 

shared Hybrid Attack Ontology based on predefined 

playbooks. Such collaborative systems take structures that 

focus on privacy issues as structured in line with privacy-

driven ML frameworks (Boar et al., 2025; Shahriar et al., 

2023). 

IV. PILLAR I: MULTIMODAL CONTEXT-AWARM DEEPFAKE 

DETECTION (M-CADD). 

Hypothesis: M-CADD assumes that the practical logical 

inconsistency is a higher measure of organized campaigns 

with malicious synthetic media than low-level artifacts 

alone (Guo et al., 2022). 

A. Architecture & Methodology 

1. Multimodal Input Processing: Ingests video V, audio 

A, metadata M, and real-time contextual feeds Ct 

(e.g., geolocation, calendar, financial, and 

environmental data). 

2. Semantic Claim Extraction: A fine-tuned vision-

language model (e.g., ViT-LLaMA) processes V and 

A to output a set of semantic claims \(S = \{s_1, s_2, 

\dots, s_n\}\) 

3. Contextual Verification Engine: Each claim s_i is 

checked against a curated knowledge graph KG 

(Mahid et al., 2025) and real-time feeds Ct. A 

consistency score ψ_i ∈ [0, 1] is computed using 

transformer-based entailment models. 

4. Dissemination Graph Analysis: Constructs a 

propagation graph Gd=(N, E) from metadata M. 

Extracts graph-theoretic features (e.g., burstiness, bot-

cluster ratio) to yield an anomalous spread score α. 

5. Fusion Classification: A feed-forward neural network 

F_θ takes the feature vector [ ψ, α, φ(V, A) ] (where φ 

denotes SOTA artifact features) to produce the final 

probability P(malicious). 

B. Experimental Validation  

We constructed a dataset of 500 high-quality deepfakes 

(generated using Stable Diffusion 3.0 and Wav2Lip 2.0) 

embedded within plausible false narratives. The prediction 

with high Baselines (SOTA: 81.2% accuracy) attempts 

were not as good as with m-cADD (M-CADD: 94.3% 

accuracy, F1-score: 0.927).  

It showed high levels of effectiveness in indicating 

logically impossible claims even at a high visual fidelity. 

V. PILLAR II: RESILIENT CONTROL SYSTEM (RCS) 

IMMUNE LEARNING (RCS-IL) 

RCS-IL formulates ICS defense as a Partially 

Observable Markov Decision Process (POMDP)—a 

modeling approach also effective for assessing system 

availability and security (Kharchenko et al., 2022)—which 

is solved via RL within a high-fidelity digital twin. 

A. Digital Twin and Adversarial Environment. 

Physical dynamics of the twin models (e.g., equations of 

power flow), the control logic, and network layers. A multi-

vector (FDI + actuator compromise) adversarial RL agent 

(Chen et al., 2024) is conditioned to instigate a dynamic 

threat environment to the defender agent, which is similar 

to autonomous systems' physical testing (Wang et al., 

2023). 

B. RL Formulation 

• State Space s<sub>t</sub>: It is the combination of 

sensor measurements y.t., actuator states u.t., and 

network warnings n.t., and the resultant physical 

invariants h (y.t., u.t.). 

• Action Space a<sub>t</sub>: Discrete continuous 

mixture, e.g., {isolate substation, adjust setpoint, 

override PLC command}. 

• Reward Function R(sₜ, aₜ): 

• R = - (λ₁ · ||Δf||₂ + λ₂ · L_load + λ₃ · C_intervention) + 

λ₄ · 𝟙_detection 

• where Δf is frequency deviation, L_load is load shed, 

and C_intervention is the cost of defensive actions. 

C. Training & Results 

In a simulated 72-hour attack on an IEEE 39-bus model, 

RCS-IL reduced the Impact Severity Index (ISI) by 78% 

compared to a rule-based intrusion detection system (IDS), 

while maintaining frequency within ±0.15 Hz—

demonstrating robustness that could be further analyzed 

using reachability methods (Zhang et al., 2023). 

VI. PILLAR III: CROSS-DOMAIN HYBRID ATTACK GRAPH 

ENGINE (C-HAGE). 

C-HAGE employs a Temporal Heterogeneous Graph 

Neural Network (THGNN) to model CPC attack 

progression, extending concepts from spatial-temporal 

graph models used in APT detection (Bahar et al., 2025) 
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A. Graph Construction 

• Nodes V: Here will be instances that belong to 

domains (e.g., pipe, SocialMediaAccount, Firewall, 

PLC). 

• Edges E: Indicate witnessed relationships or attack 

event (ex: POSTS, EXPLOITS, CONTROLS). 

• Node/Edge Attribution: Each node and edge is 

attributed with a time-varying compromise probability 

P_c(v_i, t). Bayesian belief update: Each node and 

edge is attributed with a time-varying compromise 

probability P. 

B. Probabilistic Inference & Prediction 

THGNN learns using old attack graphs. The likelihood 

of an attack step e_{jk}^{t+1} at time *t + 1*is: 

P(e_{jk}^{(t+1)}) = σ( THGNN(h_j^{(t)}, h_k^{(t)}, 

P_c^{(t)}, e_{hist}) ) 

Where: 

h_j^{(t)} = embedding of node j at time t 

P_c^{(t)} = vector of compromise probabilities at time t 

e_{hist} = historical edge features 

σ = sigmoid activation function 

C. Evaluation 

In a simulated smart-city attack hybrid attack, C-HAGE 

was 82 percent accurate in the target stage of the next 

attack (e.g., social media boom to targeted malware 

deployment of a SCADA set), with an average lead time of 

23 minutes at which countermeasures could be taken. 

VII. INTEGRATED CASE STUDY: ELECTION 

INFRASTRUCTURE DEFENSE). 

The integrated response of SHIELD was tested with the 

help of a simulated campaign against election 

infrastructure: 

1. Cognitive: On the geolocation of videos and schedule 

mismatch, M-CADD spotted the occurrence of a 

deepfake video of an official as contextually 

inconsistent (P = 0.96). 

2. Correlation: C-HAGE performed a correlation 

between the spread of the deepfake and simultaneous 

DDoS warnings, increasing the level of danger and 

making the possibility of GPS spoofing of logistics 

systems probable. 

 

 

 

 

3. Physical Mitigation: Physical Mitigation RCS-IL 

(modified to suit fleet management) did not recognize 

the spoofed GPS signal and activated a congestion to 

inertial navigation to avoid disruption. 

The FOC orchestrated a unified response: issuing public 

rebuttals, redirecting DDoS traffic, and securing physical 

assets 

VIII. DISCUSSION, LIMITATIONS, AND FUTURE WORK. 

Discussion: SHIELD proves that the synergy of hybrid 

attacks can be disturbed by cross-domain AI fusion. 

Predictive correlation's main strength is the capability to 

extrapolate latent correlations across domains of CPC. 

Limitations: 

• Data Privacy: M-CADD and C-HAGE will have 

access to sensitive data. To implement it in practice, 

federated learning and a differential privacy method 

should be combined (Li et al., 2024; Olowononi et al., 

2021). 

• Adversarial Adaptation: Adversaries can also 

introduce model extraction or poisoning attacks to 

SHIELD elements (Guo et al., 2022), which require 

adversarial training to be done continuously. 

• Computational Overhead: Real-time inference, 

especially for the THGNN and digital twin, demands 

significant computational resources. 

Future Work  

Future directions consist of: 1) creating a Hybrid Threat 

LLM to Aid C-HAGE in the creation of threat reports; 2) 

implementing a hardware-in-the-loop testbed for real-world 

validation; and 3) formalizing the FOC's decision-making 

as a Stackelberg game against strategic adversaries. 

IX. CONCLUSION  

The growth of AI-driven hybrid warfare requires a 

paradigm shift from being domain-sized in defenses to 

autonomous and integrated AI systems. SHIELD provides a 

validated technical blueprint through its three core 

components: M-CADD for cognitive integrity, RCS-IL for 

physical resilience, and C-HAGE for cross-domain threat 

intelligence. Through a combination of AI in the cyber, 

physical, and cognitive planes, we will have the ability to 

protect the most vital nexus where these vectors meet. This 

combination is not just scholarly but a practical need to 

protect critical infrastructure and other systems of society. 
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