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Abstract— The performance of Deep Learning models is 

highly sensitive to their hyperparameters. Traditional 

methods like Grid Search and Random Search are often 

computationally expensive and inefficient. This paper 

presents an empirical comparison of four population-based 

and trajectory-based metaheuristic algorithms-Differential 

Evolution (DE), Particle Swarm Optimization (PSO), 

Simulated Annealing (SA), and a custom Archerfish 

Optimizer (AHO)-for the task of hyperparameter tuning a 

Convolutional Neural Network (CNN) on the MNIST dataset. 

The hyperparameter search space includes the learning rate, 

batch size, number of convolutional filters, and dropout rate. 

Our results, measured by final validation accuracy and 

computational time, indicate that while PSO and DE achieve 

the highest accuracy (~98.96%), SA offers a significant trade-

off, converging to a good solution in approximately 60% of the 

time required by the population-based methods. The study 

demonstrates the efficacy of metaheuristics as efficient and 

effective tools for automated hyperparameter optimization in 

deep learning.   
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I. INTRODUCTION 

The success of Convolutional Neural Networks (CNNs) 

in image recognition tasks is undeniable. However, 

achieving state-of-the-art performance requires careful 

selection of hyperparameters, which govern the training 

process and model architecture. Manual tuning is labor-

intensive and relies heavily on expert intuition. Automated 

Hyperparameter Optimization (HPO) is thus a critical area 

of research in machine learning. 

While exhaustive methods like Grid Search are 

guaranteed to find the optimal solution within a discrete 

search space, they are computationally prohibitive for high-

dimensional problems. Random Search [1] offers a more 

efficient alternative but may still waste resources by 

evaluating poor configurations. In recent years, 

metaheuristic algorithms, inspired by natural phenomena, 

have emerged as powerful tools for global optimization in 

complex, non-convex search spaces. 

This work investigates the application of four 

metaheuristic algorithms for tuning the hyperparameters of 

a CNN designed for the MNIST digit classification task: 

i. Differential Evolution (DE) 

ii. Particle Swarm Optimization (PSO) 

iii. Simulated Annealing (SA) 

iv. A custom Archerfish Optimizer (AHO) 

We compare their performance in terms of final model 

accuracy and computational efficiency, providing insights 

into their suitability for deep learning HPO. 

II. LITERATURE REVIEW 

The performance of machine learning models, 

particularly deep neural networks, is critically dependent 

on their hyperparameters. Traditional manual tuning is 

time-consuming and requires expert knowledge, leading to 

the development of automated Hyperparameter 

Optimization (HPO) methods. Early approaches included 

Grid Search, which exhaustively searches a predefined 

hyperparameter space, but this method becomes 

computationally prohibitive as dimensionality increases. A 

significant advancement came from Bergstra & Bengio [1], 

who demonstrated that Random Search is often more 

efficient than Grid Search in high-dimensional spaces. 

Storn & Price [2] introduced Differential Evolution (DE), 

which creates new candidate solutions by combining 

existing ones using difference vectors. The application of 

these metaheuristics to deep learning has gained significant 

attention. Population-based algorithms offered more robust 

search capabilities. Kennedy & Eberhart [3] developed 

Particle Swarm Optimization (PSO), inspired by social 

behavior patterns like bird flocking. 

Metaheuristic algorithms, inspired by natural 

phenomena, emerged as powerful alternatives for global 

optimization problems. These algorithms balance 

exploration (searching new areas) and exploitation 

(refining known good areas) more effectively than simple 

random sampling. Kirkpatrick, Gelatt, & Vecchi [4] 

introduced Simulated Annealing (SA), a trajectory-based 

algorithm inspired by the annealing process in metallurgy.  
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Zaheer & Shaziya [5] provided a comprehensive study 

comparing various optimization algorithms in deep 

learning. Recent comprehensive reviews have solidified the 

position of metaheuristics in deep learning HPO. Ibrahim et 

al. [6] conducted an extensive survey specifically focusing 

on optimizing Convolutional Neural Networks (CNNs) 

through metaheuristic algorithms. Baskaran, Pratap, & 

Bansal [7] explored nature-inspired metaheuristic 

algorithms for CNN hyperparameter tuning in image 

classification tasks. 

PSO has received particular attention due to its 

effectiveness and simplicity. Munsarif, Sam'an, & Fahrezi 

[8] proposed a modified PSO specifically designed for 

CNN hyperparameter optimization, incorporating adaptive 

parameters and specialized mutation operators to improve 

convergence speed and solution quality in image 

classification problems.Narayanan & Ganesh [9] provided 

a broader perspective on metaheuristics for HPO across 

machine learning, discussing the adaptation of these 

algorithms to handle the specific challenges of ML 

hyperparameter spaces, including mixed data types 

(continuous, discrete, categorical) and expensive function 

evaluations. The application of metaheuristics to specific 

domains has yielded impressive results.  

In medical imaging, a domain where model accuracy is 

critical, Aguerchi et al. [10] demonstrated the successful 

application of PSO for optimizing CNN hyperparameters in 

mammography breast cancer classification. Their work 

showed that metaheuristic-optimized CNNs achieved 

superior performance compared to manually-tuned models, 

highlighting the practical significance of these methods in 

real-world applications where model performance directly 

impacts decision-making. 

A. Research Gaps 

The literature demonstrates a clear evolution from 

simple methods like Grid and Random Search to 

sophisticated metaheuristic approaches for HPO. 

Population-based algorithms like PSO and DE have proven 

particularly effective for tuning CNN architectures, 

consistently outperforming both traditional methods and 

single-solution metaheuristics like SA in terms of final 

solution quality. However, several research gaps remain. 

The computational cost of metaheuristics remains a 

concern, especially when combined with the already 

expensive training of deep neural networks. There is 

ongoing research into developing more efficient variants 

and hybrid approaches that combine the strengths of 

multiple algorithms.  

 

Additionally, the adaptation of metaheuristics to handle 

increasingly complex neural architectures and the 

integration with other HPO methods like Bayesian 

optimization represent promising future directions. The 

collective evidence suggests that metaheuristic algorithms 

have established themselves as essential tools in the deep 

learning practitioner's toolkit, particularly for complex 

computer vision tasks where optimal hyperparameter 

configuration can significantly impact model performance. 

III. METHODOLOGY 

A. Problem Formulation 

The HPO task is framed as a minimization problem. Let 

a candidate solution (an individual in the population or a 

state) be a vector x representing a set of hyperparameters: x 

= [learning_rate, batch_size, num_filters, dropout_rate] 

The objective function f(x) is defined as 1 - 

validation_accuracy, where validation_accuracy is the 

performance of a CNN trained with hyperparameters x on 

the MNIST test set. The goal of the metaheuristics is to 

find x* that minimizes f(x). 

The search space bounds for the hyperparameters are 

defined as follows: 

 Learning Rate: [1e-4, 1e-2] (Log-scale) 

 Batch Size: [16, 128] (Integer) 

 Number of Filters: [8, 64] (Integer) 

 Dropout Rate: [0.1, 0.6] (Continuous) 

B. CNN Architecture and Training 

A simple yet effective CNN architecture is employed: 

i. Convolutional Block 1: A 2D convolutional layer 

with num_filters and a 3x3 kernel, followed by 

ReLU activation and a 2x2 max-pooling layer. 

ii. Convolutional Block 2: A 2D convolutional layer 

with num_filters * 2 filters and a 3x3 kernel, 

followed by ReLU activation and a 2x2 max-

pooling layer. 

iii. Classifier: A fully connected layer mapping the 

flattened features to 128 units (with ReLU and 

Dropout), followed by a final output layer of 10 

units. 

The model is trained for a short cycle of 2 epochs using 

the Adam optimizer and Cross-Entropy loss. This limited 

training allows for a rapid evaluation of hyperparameter 

quality, which is essential for iterative metaheuristic search. 
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C. Metaheuristic Algorithms 

All algorithms were configured with a small population 

size (6 for DE, PSO, AHO) and a low number of iterations 

(4-6) to maintain a fixed, low computational budget, 

simulating a scenario where resources are limited. 

i. Differential Evolution (DE): A population-based 

algorithm that creates new candidates by 

combining existing ones according to a difference 

vector strategy. Key parameters: F=0.8 (mutation 

scale) and CR=0.9 (crossover rate). 

ii. Particle Swarm Optimization (PSO): Inspired by 

social behavior, where particles (candidate 

solutions) move through the search space 

influenced by their own best-known position and 

the swarm's best-known position. Key parameters: 

w=0.7 (inertia), c1=1.5, c2=1.5 (acceleration 

coefficients). 

iii. Simulated Annealing (SA): A trajectory-based 

algorithm that probabilistically accepts worse 

solutions to escape local minima, with an 

"annealing schedule" that reduces this probability 

over time. Key parameters: T0=1.0 (initial 

temperature), alpha=0.8 (cooling rate). 

iv. Archerfish Optimizer (AHO): A custom algorithm 

inspired by the hunting behavior of archerfish. 

Each individual "shoots" a water jet (a new 

candidate solution) towards a randomly selected 

target in the population. If the new solution is 

better, it replaces the current one. 

D. Experimental Setup 

 Dataset: MNIST (70,000 28x28 grayscale images 

of digits). 

 Environment: Python with PyTorch, running on an 

NVIDIA GPU (CUDA) in a Kaggle environment. 

 Evaluation: Each algorithm was run once with its 

predefined budget. The best-found 

hyperparameters were used to train a final model, 

and its accuracy on the separate test set was 

recorded. The wall-clock time for the entire 

optimization process was also measured. 

IV. RESULTS AND DISCUSSION 

The following table summarizes the performance of the 

four metaheuristic algorithms: 

Optimizer 

Best 

Validation 

Accuracy 

Best 

Hyperparameters 

[lr, batch, filters, 

drop] 

Time 

(min) 

PSO 98.96% [4.64e-3, 122, 18, 

0.6] 

8.20 

DE 98.92% [1.64e-3, 104, 59, 

0.35] 

8.82 

AHO 98.83% [3.90e-3, 105, 38, 

0.38] 

8.53 

SA 95.07% [5.53e-3, 96, 42, 

0.37] 

5.33 

Discussions 

i. Accuracy Performance: PSO and DE, both 

sophisticated population-based algorithms, 

achieved the highest validation accuracy, closely 

followed by AHO. This suggests that their 

mechanisms for exploring the search space (social 

learning in PSO and differential mutation in DE) 

are highly effective for this HPO problem. 

ii. Computational Efficiency: SA was the fastest 

algorithm, completing its search in just 5.33 

minutes—approximately 65% of the time taken by 

PSO. This is expected as SA is a trajectory-based 

method that maintains only a single candidate 

solution, whereas population-based methods 

evaluate multiple candidates per iteration. 

iii. Performance-Speed Trade-off: SA converged to a 

significantly lower accuracy (~95%) than the other 

methods. This indicates that with a very limited 

budget, it may converge prematurely to a local 

optimum. However, its speed makes it an 

attractive option for a very rough, initial 

hyperparameter sweep. 

iv. AHO Performance: The custom AHO performed 

respectably, demonstrating that even simple bio-

inspired mechanisms can be effective for HPO. Its 

performance was on par with DE and PSO, though 

slightly lower, suggesting its "shooting" 

mechanism provides a good balance between 

exploration and exploitation. 

The bar chart below visualizes the accuracy comparison, 

clearly showing the performance gap between SA and the 

other three algorithms. 
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Figure 1: Comparison of final validation accuracy achieved by each 

metaheuristic optimizer. 

V. CONCLUSION AND FUTURE WORK 

This study demonstrated the successful application of 

metaheuristic algorithms for hyperparameter tuning of a 

CNN on the MNIST dataset. Under a constrained 

computational budget, population-based algorithms like 

PSO and DE reliably found hyperparameter configurations 

yielding high accuracy (~98.9%), while Simulated 

Annealing provided a much faster, though less accurate, 

solution. 

Future work will focus on: 

i. Scalability: Testing these algorithms on more 

complex datasets (e.g., CIFAR-10, ImageNet) and 

larger CNN architectures. 

ii. Budget Analysis: Conducting a more thorough 

analysis of performance versus computational 

budget (number of iterations and population size). 

iii. Advanced Metaheuristics: Incorporating more 

recent and advanced metaheuristics like Gray 

Wolf Optimizer (GWO) or Harris Hawks 

Optimization (HHO). 

 

 

 

 

 

 

 

 

 

iv. Benchmarking: Comparing these methods against 

Bayesian Optimization, a current state-of-the-art 

method for HPO. 

In conclusion, metaheuristics present a powerful, 

flexible, and often underutilized approach to the 

hyperparameter optimization problem, capable of finding 

high-performing configurations efficiently. 
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