

Prevalence of Anaemia among College Students in Pasar Region, Cuddalore District, Tamilnadu

N. Arun¹, Dr. M. Subramanian², Abi. D³, Rajeshwari. R⁴, Vaitheki. K⁵, Virudhasarani. M⁶

^{1,2}Assistant professor, Department of Microbiology, Sathya Saai Arts and Science College for Women, Pasar, Cuddalore DT, 606304, Tamilnadu, India

^{3,4,5,6} Bsc Microbiology, Department of Microbiology, Sathya Saai Arts and Science College for Women, Pasar, Cuddalore DT, 606304, Tamilnadu, India

Abstract--Iron deficiency anaemia (IDA) is a common health problem in rural women and young children of India. The college students usually take food from residential halls, and the food value of their diets is not always balanced. This cross-sectional study was conducted to estimate the prevalence of iron- deficiency anaemia among the college students of Mangalore region, Cuddalore District, Tamilnadu. Hemoglobin level of 300 randomly-selected female students was measured calorimetrically, using Sahli's haemoglobinometer during August 2025. Statistical analysis was done by using SPSS software for Windows (version 16) (SPSS Inc., Chicago, IL, USA). In the study, 55.3% students were found anaemic, of whom 36.7% were of age 17 years, and 63.3% were of age 18 years. Students aged 18-19 years were more anaemic (43.4%) than other age-groups. Majority (51.3%) of female students showed their haemoglobin level in the range of 13-15g/dL, followed by 26.0% and 21.3% with 10-12g/dL and 16-18g/dL respectively. Although 50.5% anaemic and 51.1% non-anaemic female students showed normal BMI—lower percentage than anaemic (60.7%) and non- anaemic (71.9%) female students, the underweight students were found more anaemic than the overweight and obese subjects. Regular breakfast-taking habit showed significant ($p=0.035$, 95% CI 0.5-1.0) influence on IDA compared to non-regular breakfast takers. In provoking IDA. In the case of non-anaemic subjects, all of the above parameters were significant, except the junk food consumption ($p=0.342$, 95% CI 0.5-1.2). Our study revealed that majority of college students, especially 18-19 years female, were anaemic that might be aggravated by food habit and lack of awareness. The results suggest that anaemia can be prevented by providing proper knowledge on the healthful diet, improved lifestyle, and harmful effect of anaemia to the students.

I. INTRODUCTION

Anaemia is a condition in which the number of red blood cells (and consequently their oxygen-carrying capacity) is insufficient to meet the body's physiologic needs. Specific physiologic needs vary with a person's age, gender, residential elevation above sea level (altitude), smoking behaviour, and different stages of pregnancy.

Iron deficiency is thought to be the most common cause of anaemia globally, but other nutritional deficiencies (including folate, vitamin B12 and vitamin A), acute and chronic inflammation, parasitic infections, and inherited or acquired disorders that affect haemoglobin synthesis, red blood cell production or red blood cell survival, can cause anaemia. Haemoglobin concentration alone cannot be used to diagnose iron deficiency. However, the concentration of haemoglobin should be measured, even though not all anaemia is caused by iron deficiency. The prevalence of anaemia is an important health indicator and when it is used with other measurement so for iron status the haemoglobin concentration can provide information about the severity of iron deficiency (1).

Nutritional anaemias(2), is a report of a WHO Scientific Group that consisted of an international group of experts convened in Geneva, Switzerland from 13-17 March 1967. The consultation was called three years after the start of a worldwide multi- country collaborative study in India, Israel, Mexico, Poland, South Africa, the United Kingdom, the United States of America, and Venezuela. The study investigated iron metabolism in pregnancy as well as the role of hookworm in anaemia during pregnancy, and further tested the procedures for examining blood and serum. The 1967 consultation reviewed overall progress of these studies and also discussed nutritional requirements of iron, folate, and vitamin B12.

In India, nutritional anaemia has long been identified as a serious public-health problem(11). The national vitamin A survey conducted in 1997-1998 showed that nearly 50% of pregnant women in rural India had anaemia (12). Moreover, many surveys conducted in the past stated that anaemia is a severe problem among all across age, population and geographic groups in India. In 2004, another survey conducted by Nutritional Surveillance Project of Helen Keller International in collaboration with the Institute of Public Health Nutrition showed that 68% of under-five children were anaemic.

The survey also suggested that 40% of adolescent girls and 31% adolescent boys as well as 46% of non-pregnant and 39% of pregnant women were affected by anaemia (6). The anaemia prevention and control strategies have focused on correcting this deficiency by routine iron supplementation. However, the effectiveness of iron supplementation programmes has generally been low(13).

All these studies have been carried out among the rural populations, and in adequate attention has been paid among the educated urban populations. The present study aimed to assess the prevalence and causes of iron-deficiency anaemia through laboratory evaluation of individuals haemoglobin level and assessment of their health condition and lifestyle through a structured questionnaire administered among the college students of Sathya Saai Arts and Science College for Women, Pasar, Cuddalore District, Tamilnadu, India.

Scope

- This document aims to provide users of the Vitamin and Mineral Nutrition Information System (VMNIS) with information about the use of haemoglobin concentration for diagnosing anaemia .
- It is a compilation of current World Health Organization (WHO) recommendations on the topic and summarizes the cut-offs for defining anaemia and its severity at the population level, as well as the chronology of their establishment.
- The use of the cut-off points derived from the referenced publications permits the identification of populations at greatest risk of anaemia and priority areas for action, especially when resources are limited.
- They also facilitate the monitoring and assessment of progress towards international goals of preventing and controlling iron deficiency and further provide the basis for advocacy for the prevention of anaemia.

Objectives

The objectives of the present study are:

- 1) To Estimate the Hemoglobin level among Sathya Saai college female students.
- 2) To calculate the BMI among the study subjects.
- 3) To Measure the age, height and weight among the study subjects.

II. MATERIALS AND METHODS

Study design

The study was done using a cross-sectional design to determine the prevalence of anaemia among the Sathya Saai Arts and Science college students by analyzing blood samples to measure the concentration of hemoglobin (Hb) and to evaluate their body mass index (BMI), dietary habits, and the status of awareness regarding their food intake. It was a project work for the partial fulfillment of the requirement for the degree of Bachelor of Science in Microbiology and was conducted in August 2025.

Study subjects

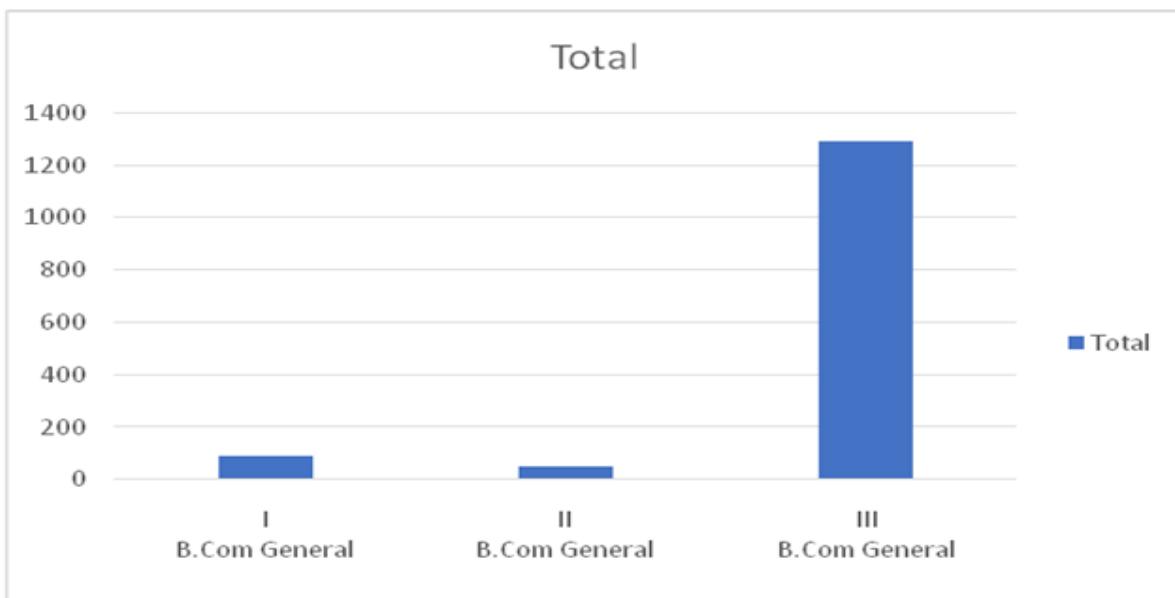
The study included 300 graduation-level students aged 17-25 years(150, 16-17 years female and 18-19 years 150 female), with different socioeconomic backgrounds, from 10 departments of Sathya Saai Arts and Science College for Women, Pasar, Cuddalore District, Tamilnadu. We conducted this study with equal number of age groups of female students because we wanted to compare the prevalence of anaemia between these two groups. Both residential and non- residential students were selected randomly, i.e. we did not consider whether the students were resident or non-resident in different halls of the College .Before collecting blood, participants were informed about the experiment, and a verbal consent was taken from each participant. Participant who was not interested to provide his/her blood voluntarily were excluded from the study, and another volunteer was selected.

Data collection

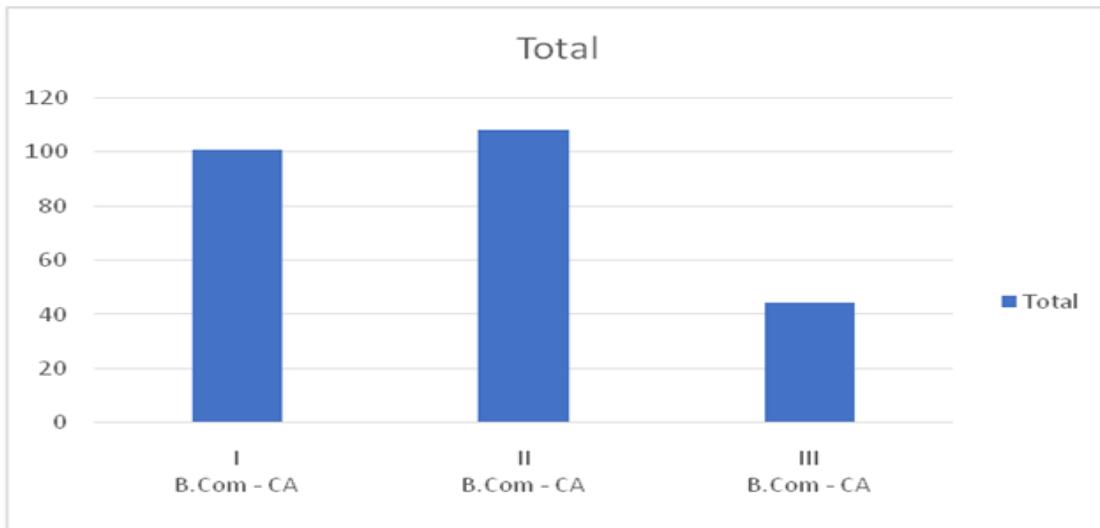
A team comprising one doctor, two laboratory technicians, from Kazhadhur Government Hospital, Cuddalore District, Tamilnadu and volunteers from the Department of Microbiology collected data, using a pretested questionnaire and measured haemoglobin concentration, height, and weight of the individuals. The questionnaire was developed to obtain information about age, sex, and food habits.

Haemoglobin concentrations were analyzed calorimetrically, using Sahli's haemoglobinometer. Blood samples were drawn by Sahli's pipette and then added to the haemoglobin tube where haemoglobin (Hb) was converted to acid haematin by the addition of 0.1 N hydrochloric acid, and the resulting brown colour was diluted by adding distilled water, which was finally compared with the standard brown glass reference blocks of Sahli's haemoglobinometer(14).

Body mass index (BMI) was calculated as weight in kg divided by the square of height in metre for every individual (15). Body-weight and height were measured by portable balance and measuring tape.


Ethical consideration

This study was approved by the Department of Pharmacy and supervised by the residential doctor from Kazhadhur Government Hospital, Cuddalore District, Tamilnadu. Blood samples were collected only from those students who were interested to donate their blood voluntarily. The information of each student under the study was preserved confidentially.


Statistical methods

Data-entry and analysis were done by using SPSS for Windows (version 16) (SPSS Inc., Chicago, IL, USA). Proportions and 95% confidence intervals (95%CI) were calculated using descriptive statistics. Differences between proportions were considered statistically significant if 95% CI did not overlap. The odds ratios and p values were calculated by risk estimate and chi-square test, using analytic statistics. An alpha level of 0.05 or less was considered significant.

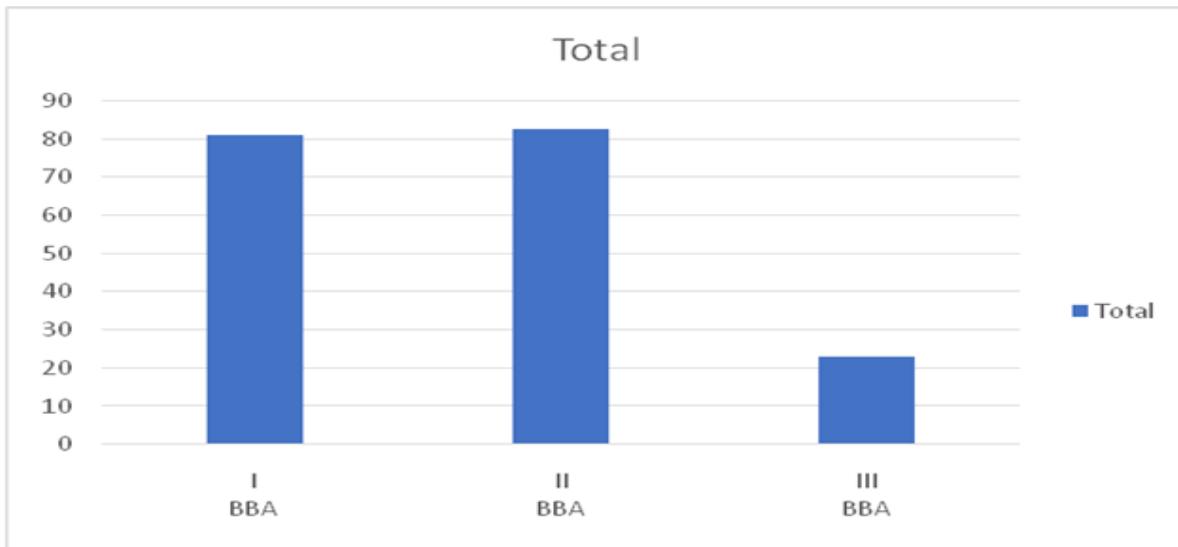

III. RESULTS AND DISCUSSION

Figure 4.1: Over All Haemoglobin Level Of Bcom

Figure 4.2 Over All Haemoglobin Level Of Bcom (Ca)

Figure 4.3 over All Haemoglobin Level Of Bba

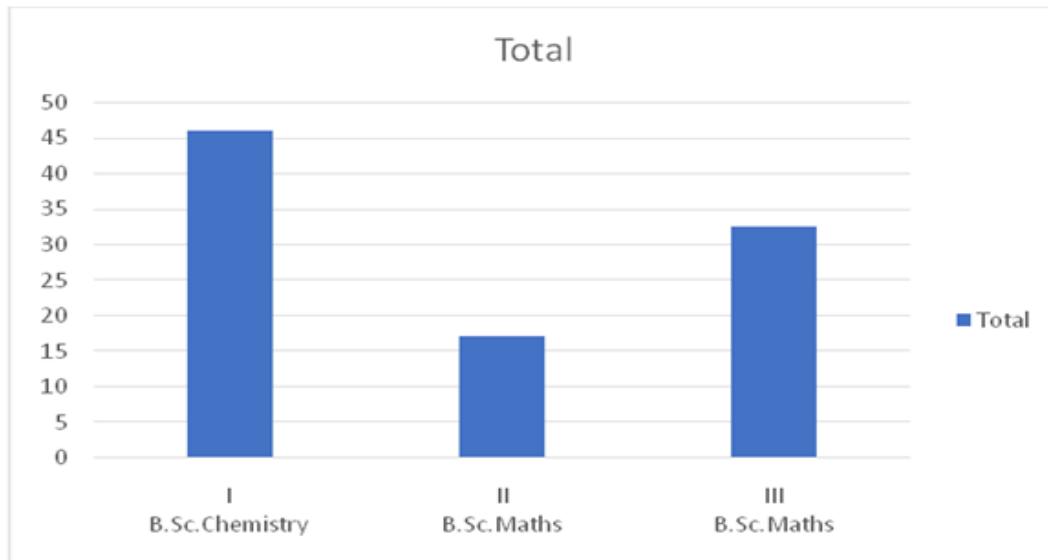
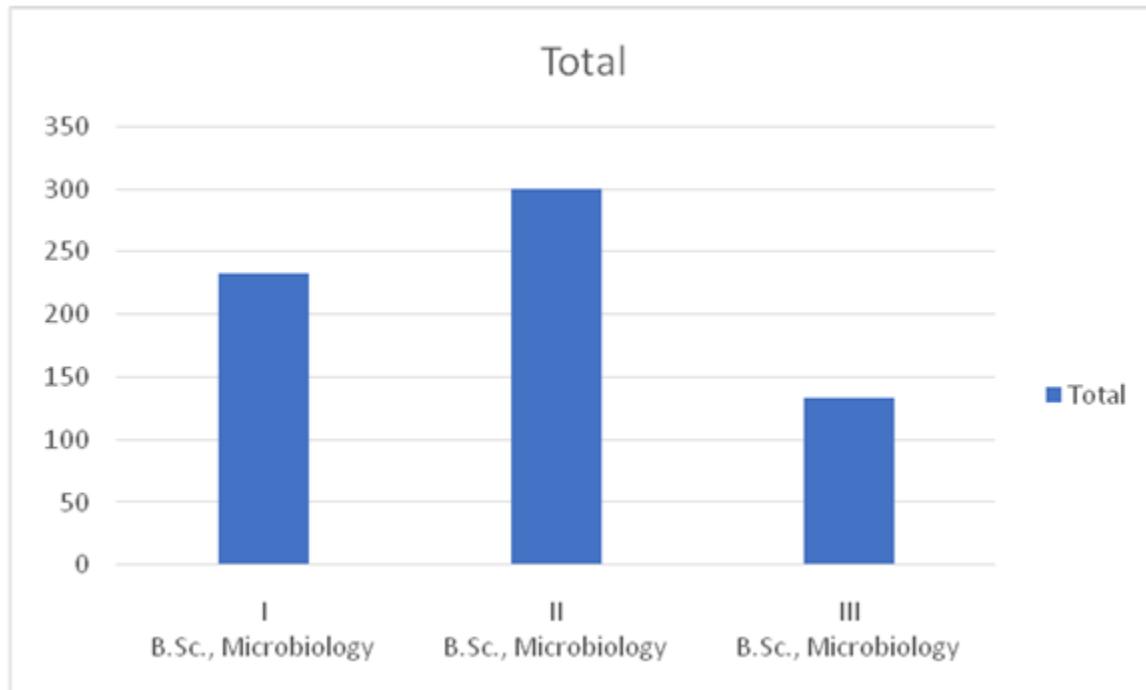
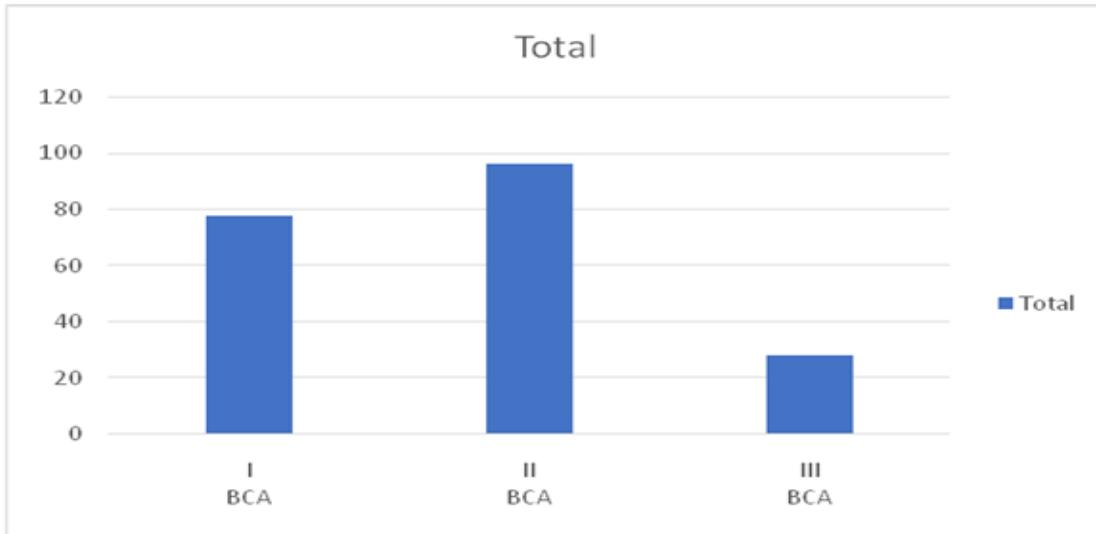
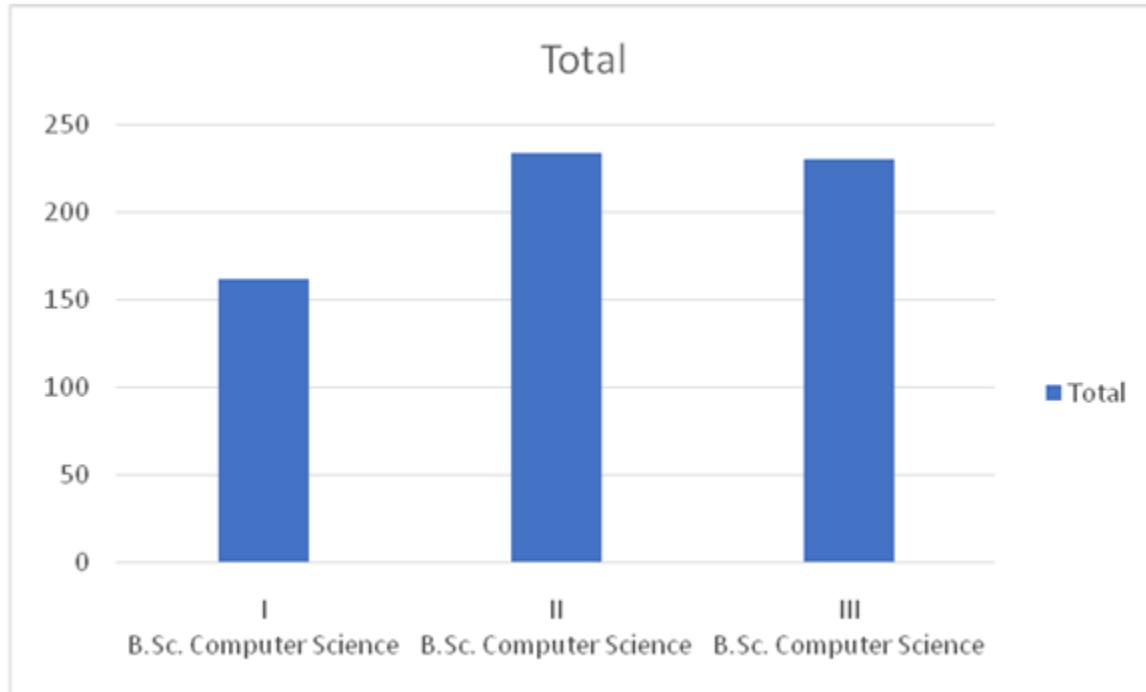


Figure4.4: Over All Haemoglobin Level Of Bsc Chemistry & Maths

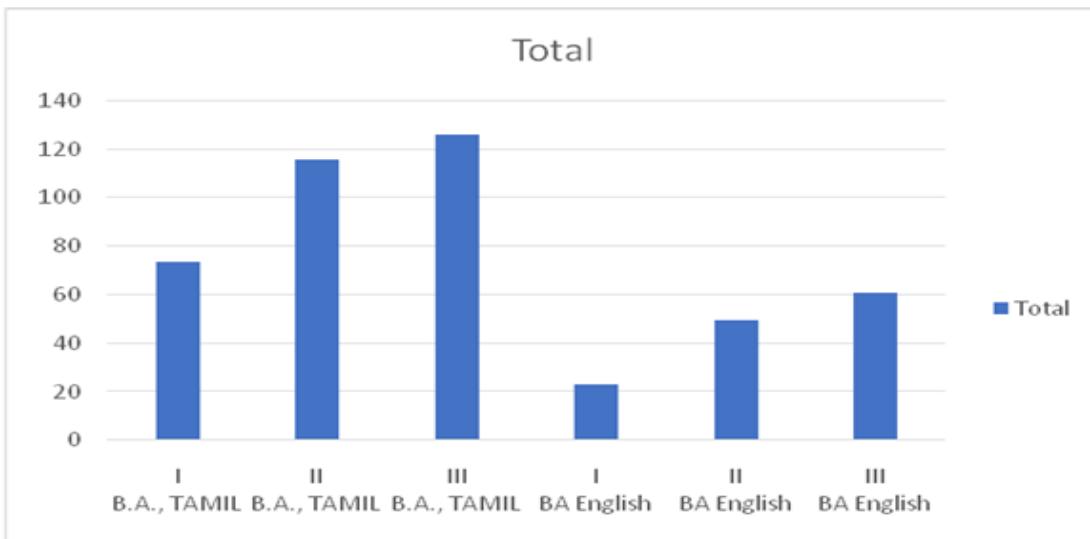

Figure 4.5: Over All Haemoglobin Level Of Bsc Microbiology

Figure 4.6: Over All Haemoglobin Level Of Bca

Figure 4.7: Over All Haemoglobin Level Of Bsc Cs

Figure 4.8: Over All Haemoglobin Level Of Ba Tamil & Ba English

IV. DISCUSSION

Prevalence of anaemia

FIGURE 4.1 shows the prevalence of anaemia by age, sex, and body mass index (BMI); 55.3% students were found anaemic, of whom 36.7% were male, and 63.3% were female. In the case of non- anaemic students, the percentage of male was approximately double compared to the female,i.e. 66.4% and 33.6% respectively. The prevalence of anaemia in students of 20-22 years age-group was higher (43.4%) than the 17-19 years (27.7%) and 23-25 (28.9%) years age-groups. Similarly, in the case of non-anaemic students, age-group of 20-22 years was also the higher (48.5%) than other two age-groups (17-19years:11.9% and 23-25 years: 39.6%). When considering BMI among the female anaemic students ,about half (50.5%) were found normal-weight students, 31.4% were underweight, and 18.1% were overweight whereas, in the case of non-anaemic females,51.1% were of normal weight, 20.0% were underweight, and 28.9% were overweight. No obese female students were found either in anaemic or non-anaemic group. On the other hand, 60.7% male anaemic students had nor- malbody-weight, 19.7%, 13.1%, and 6.5% were underweight, overweight, and obese respectively. However, in contrast to the non-anaemic females of 20 years, 71.9 % students showed normal body-weight while 18.0% and 10.1% were over weight and obese respectively; no students were found underweight.

The figure illustrates that, out of 150 female, of 16-17 years the majority (51.3%) showed their haemoglobin levels in the range of 13-15g/dL, 26.0% showed 10-12g/ dL, and 21.3% were found in the range of 16-18 g/ dL.

However, in the case of female, haemoglobin range of 10-12g/dL was found to be the highest (47.3%), followed by7-9g/dL (34.7%) and13-15 (18.0%). No female students were found with haemoglobin level of 16-18g/dL.

FIGURE4.2 shows the prevalence of anaemia by dietary habits of the individuals. Anaemia was significantly ($p=0.035, 95\% \text{CI} 0.5-1.0$) more prevalent among those who were irregular in their breakfast intake than the individuals taking regular break fast, and it was more statistically significant ($p=0.0002, 95\% \text{CI} 1.4-3.4$) for the non-anaemic students. The number of those who were not regular eaters of certain food items, such as meat, fish, poultry, eggs, or peanut butter, was not statistically significant ($p=0.097, 95\% \text{CI} 0.5-1.1$) for provoking anaemia but significant ($p=0.01, 95\% \text{CI} 1.1-2.6$) for the subjects who were non-anaemic. The number of those who were taking junk food had no statistically significant ($p=0.053, 95\% \text{CI} 1.1-2.3$) relationship with developing anaemia. Multvitamins consumption was not statistically significant ($p=0.148, 95\% \text{CI} 0.6-1.2$) for anaemic subjects but significant ($p=0.041, 95\% \text{CI} 0.4-1.0$) for non-anaemic subjects. On the basis of iron/iron-rich food consumption frequency (regularly and irregularly), there was a very little difference among the anaemic subjects, which was not significant ($p=0.487, 95\% \text{CI} 0.7-1.4$) but asignificant ($p<0.0001, 95\% \text{CI} 1.9-4.6$) difference was observed among the non-anaemic students in terms of regular and irregular intake of iron/iron- rich food.

FIGURE 4.3 presents the awareness of anaemia among the college students. Among the female students of age 16-17 years, significantly higher proportion [74.0% (111/150); p<0.0001, 95% CI 0.2-0.5] of students were un-aware whereas 26.0% (39/150) were aware about anaemia. In the case of female students of age 18-21 years, the difference in awareness (45.3%,68/150) and unawareness (54.7%,82/150) was not statistically significant (p=0.369, 95% CI 0.6-1.2).

Anaemia, especially iron-deficiency anaemia, is the most common nutritional deficiency worldwide. The detrimental effects of anaemia on work productivity of adults and physical development of children are of major concern (16).

In this study, 55.3% students were anaemic, of whom 63.3% were female; thus, anaemia was found to be much more common among females of age 18-21 years (36.7%,p<0.0001). Possible reasons might be poor dietary habit, menstrual blood loss, and lack of awareness of iron-deficiency and nutritional status(1).Several studies showed that ,as in India college students of other countries were also affected by iron-deficiency or iron-deficiency anaemia.In Indian medical students, prevalence of IDA was found 32.0%, of whom 44.0% were girls, and 20.0% were boys .Besides,the prevalence of iron-deficiency was 40.9%, and that of IDA was 3.8% in Iranian college students; anaemia prevalence rate was also found to be 29.0% in Emirati students of 18-24 years age-group (17-19). Females are prone to anaemia because of menstruation and due to social customs; they get a diet of inferior quality compared to females. With the substantial differences between the sexes, total body iron stores contain about 2 to 4g and lose 1mg of iron per day(20).However,42 mg of iron loss per menstrual cycle has been reported in females with heavy blood flow, which may lead to anaemia (21). On the other hand, males suffer from anaemia mostly due to poor diet. About half of both anaemic and non-anaemic students showed normal body-weight. Overweight females were less anaemic than the underweight ones. Similarly, among the male anaemic students, the underweight individuals were more prevalent than overweight and the obese, which suggests that overweight and obese people are less likely to be anaemic compared to normal and underweight people (22).

In our study, regular breakfast intake revealed statistically significant difference among anaemic (p=0.035, 95% CI 0.5-1.0) and non-anaemic (p=0.0002, 95% CI 1.4-3.4) students. Among the anaemic students 41.0% were regular in their breakfast intake and, in the case of non-anaemic students, the figure was 68.7%.A nutritious breakfast that includes sugar, starch, protein, fat, fibre,

vitamins and minerals, especially iron and vitamin C, is necessary to ensure the sustained release of energy.

Skipping breakfast is a known practice among college students of India due to late awaking, not being hungry in the morning, or disliking towards the food served. This not only exists in India but also found in the Gulf countries (23-24).

The regular (43.4%) and irregular (56.6%) consumption of meat, fish, poultry, eggs, or peanut butter was not statistically significant (p=0.097, 95% CI 0.5-1.1) among the anaemic students but it was significant (p=0.01, 95% CI 1.1-2.6) among the non-anaemic subjects, in which case, the rates of regular and irregular intake of the above mentioned diet were 62.7% and 37.3% respectively. Another study revealed similar results that low consumption of diets, such as red meat, vegetables, fruits, and cereals has been reported to be associated with iron-deficiency anaemia (25). The present study showed that junk food consumption among the anaemic and the non-anaemic subjects had no statistically significant influence on IDA (p=0.053, 95%CI11- 2.3 and p=0.342,95% CI0.5-1.2 respectively).Out of the anaemic subjects, 61.5% preferred junk food while it was 44.8% for the non-anaemic subjects. The traditional diet of India has changed with the introduction of junk food, and numerous studies have attributed iron-deficiency anaemia to the change in dietary habits (26). The present study showed that the consumption of multivitamins was not statistically significant (p=0.148, 95% CI 0.6-1.2) in the case of anaemic subjects and was significant (p=0.041, 95% CI 0.4-1.0) for non-anaemic subjects. Another study showed that multivitamin-mineral supplementation is not very efficacious in improving haemoglobin concentration (27).

Iron/iron-rich food intake frequency was statistically insignificant for the anaemic subjects (p=0.487, 95% CI 0.7-1.4) while it was significant in case of non-anaemic subjects(p<0.0001,95%CI1.9-4.6).Among the anaemic subjects, 49.4% consume iron/ iron-rich food regularly, and 50.6% were irregular but, in the case of non-anaemic subjects, 74.6% were regular, and 25.4% were irregular. Iron deficiency is the major public-health concern in the developing countries. The size and number of red blood cells are reduced and cause iron-deficiency anaemia which affects the function of several organic systems. So, proper supplementation of iron is needed to reduce the prevalence of iron-deficiency anaemia. In recent years, a number of studies have suggested that, in various groups at risk of iron-deficiency anemia, weekly iron supplementation was as effective as daily iron supplementation in raising the haemoglobin levels (28-29).

Findings of other studies indicated that, although all of the subjects were educated, about half of them were anaemic.

Results of this study reflect the scenario of poor dietary habit and nutritional awareness responsible for IDA among students of a university in India. As residential dietary facilities in most colleges in India are not the same, it can be mentioned that students of other colleges might also be affected by IDA. According to our findings, only proper nutritious food and awareness can prevent IDA. The findings may be helpful in conducting more such research among the students of other colleges to estimate the prevalence of IDA as well as improving the awareness of taking balanced diets, benefits of nutritious food, especially iron-rich food, and healthy lifestyle to prevent IDA.

Limitations

The possible limitation of this study was that, due to lack of fund and more resource personnel, we included only the students of Sathyasaai Arts and Science college for women, Pasar, Cuddalore district in the study for collecting data, although some other colleges were present in this region. Another possible limitation was the use of Sahli's haemoglobinometer to measure haemoglobin concentration calorimetrically whereas HemoCue or other sophisticated device could be used for more accurate results of haemoglobin concentration. With haemoglobin, other haematological parameters, such as haematocrit, serum ferritin, mean corpuscular haemoglobin concentration, red blood cell count, etc. were not measured due to the lack of facilities and resources. Funding is essential to conduct this type of research not only in this region but also in any other parts of the country to get more specific and versatile results.

V. SUMMARY & CONCLUSION

- ❖ Iron-deficiency anaemia is predominant among a large number of people, especially rural women and children in India. In most of the cases, it occurs due to the lack of iron-rich food in daily diet and, sometimes, excess menstrual blood loss for women.
- ❖ The present study indicates that, besides the rural women, the majority of college students, especially female, are affected by iron-deficiency anaemia.
- ❖ The possible reason might be their food habit which provides in sufficient amount of iron. Irregular intake of breakfast and iron supplement may be another reason behind this.

- ❖ Although the study subjects are college students, it is unfortunate that majority of them are not conscious about anaemia.
- ❖ Proper health education to increase knowledge about anaemia as well as its causative factors, detrimental effect of clinical outcomes, benefits of taking iron-rich food, and avoiding unhealthy food, including fast/junk food, will be helpful to the students.
- ❖ The Government of India & Tamilnadu should take initiatives to assess the prevalence of iron-deficiency anaemia among the students of public and private colleges.
- ❖ Providing iron-rich and nutritious foods for all residential students in their daily diets will be beneficial to prevent anaemia.
- ❖ Effect of clinical outcomes, benefits of taking iron-rich food, and avoiding unhealthy food, including fast/junk food, will be helpful to the students.
- ❖ The Government of India & Tamilnadu should take initiatives to assess the prevalence of iron-deficiency anaemia among the students of public and private colleges.
- ❖ Providing iron-rich and nutritious foods for all residential students in their daily diets will be beneficial to prevent anaemia.

BIBLIOGRAPHY

- [1] Abalkhail B, Shawky S. Prevalence of daily break fast intake, iron deficiency anaemia and awareness of being anaemic among Saudi school students. *IntJ FoodSci Nutr* 2002;53:519-28.
- [2] Ramzi M, Haghpanah S, Malekmakan L, Cohan N, BaseriA ,AlamdarA etal. Anemia and iron deficiency in adolescent school girls in Kavar urban area, SouthernIran. *IranRedCrescentMed* 2011;13:128-33.
- [3] Uddin MK, Sardar MH, Hossain MZ, Alam MM, BhuyaMF,Uddin MM etal.Prevalence of anaemia in children of 6 months to 59 months in Narayanganj,Bangladesh. *JDhakaMedColl* 2010;19:126-30.
- [4] McClungJP, MarchitelliLJ ,FriedIKE, YoungAJ. Prevalence of iron deficiency and iron deficiency anemia among three populations of female military personnel in the US army. *JAmCollNutr* 2006;25:64-9.
- [5] HaidarJ .Prevalence of anaemia, deficiencies of iron and folic acid and their determinants in Ethiopian women. *JHealthPopulNutr* 2010;28:359-68.
- [6] HelenKellerInternational.The burden of anemia in rural Bangladesh: the need for urgent action. *NutrSurveillProjBull* 2006;16:1-4.
- [7] Siegel EH, Stoltzfus RJ, Khatry SK, Leclercq SC, Katz J, Tielsch JM. Epidemiology of anemia among 4- to 17-month-old children living in south central Nepal. *EurJClinNutr* 2006;60:228-35.
- [8] UNICEF/UNU/WHO. Iron deficiency anemia: assessment, prevention, and control .A guide for programme managers .Geneva: World Health Organization, 2001.114p.(WHO/NHD/01.3).

- [9] Stoltzfus RJ, Dreyfuss ML, editors. Guidelines for the use of iron supplements to prevent and treat iron deficiency anemia. Washington, DC: ILSI Press, 1998. 39p.
- [10] Balci YI, Karabulut A, Gurses D, Covut IE. Prevalence and risk factors of anemia among adolescents in Denizli, Turkey. *J Iran J Pediatr* 2012;22:77-81.
- [11] Ahmed F, MahmudaI, SattarA, Akhtaruzzaman M. Anemia and vitamin A deficiency in poor urban pregnant women of Bangladesh. *Asia Pac J Clin Nutr* 2003;12:460-6.
- [12] Helen Keller International. Vitamin A status through-out the lifecycle in rural Bangladesh: national vitamin A survey, 1997-98. Dhaka: Helen Keller International. 1999. 38 p.
- [13] Hyder SM, Persson LA, Chowdhury M, Lonnadal BO, Ekstrom EC. Anemia and iron deficiency during pregnancy in rural Bangladesh. *Public Health Nutr* 2004;7:1065-70.
- [14] HiMedia Laboratories. Technical data. Mumbai: Hi-Media Laboratories. (<http://himedialabs.com/TD/GW192.pdf>, accessed on 28 February 2013).
- [15] Centers for Disease Control and Prevention. AboutBMI for children and teens. Atlanta, GA: Centers for Disease Control and Prevention. (http://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html, accessed on 7 February 2013).
- [16] Verdon F, Burnand B, Stubi CL, Bonard C, Graff M, Michaud A *et al.* Iron supplementation for un- explained fatigue in non-anemic women: double blind randomised placebo controlled trial. *BMJ* 2003;326:1124.
- [17] Bano R, Ahmad N, Sharma BC, Agarwal A. Nutritional anemia in the medical students. *Indian Med Gaz* 2012;1:16-8.
- [18] ShamsS, AsheriH, KianmehrA, Ziaeef, Koochakza-deh L, Monajemzadeh M *et al.* The prevalence of iron deficiency anaemia in female medical students in Tehran. *Singapore Med J* 2010;51:116-9.
- [19] SultanAH. Anemia among female college students attending the University of Sharjah, UAE: prevalence and classification. *J Egypt Public Health Assoc* 2007; 82: 261-71.
- [20] Al-Sayes F, Gari M, Qusti S, Bagatian N, Abuzenadah A. Prevalence of iron deficiency and iron deficiency.
- [21] Al-SayesF, GariM, QustiS, BagatianN, Abuzenadah A. Prevalence of iron deficiency and iron deficiency anemia among females at university stage. *J Med Lab Diagn* 2011;2:5-11.
- [22] Rowland T W, Kelleher J F. Iron deficiency in athletes. Insights from high school swimmers. *Am J Dis Child* 1989;143:197-200.
- [23] Ausk K J, Ioannou G N. Is obesity associated with anemia of chronic disease? A population-based study. *Obesity (Silver Spring)* 2008;16:2356-61.
- [24] Musaiger AO. Nutritional status and dietary habits of adolescent girls in Oman. *Ecol Food Nutr* 1994;31:227-37.
- [25] Musaiger AO, Gregory WB. Dietary habits of school- children in Bahrain. *J R Soc Health* 1992;112:159- 62.
- [26] Al-Quaiz JM. Iron deficiency anemia: A study of riskfactors. *Saudi Med J* 2001;22:490-6.
- [27] Anderson J J B. The status of adolescent nutrition. *Nutr Today* 1991;26:7-10.
- [28] Moriarty-Craige SE, Ramakrishnan U, Neufeld L, RiveraJ, Martorell R. Multivitamin-mineral supplementation is not a efficacious as is iron supplementation in improving hemoglobin concentrations in non pregnant anemic women living in Mexico. *Am J Clin Nutr* 2004;80:1308-11.
- [29] Ridwan E, Schultink W, Dillon D, Gross R. Effects of weekly iron supplementation on pregnant Indonesian women are similar to those of daily supplementation. *Am J Clin Nutr* 1996;63:884- 90.
- [30] Beard JL. Weekly iron intervention: the case for intermittent iron supplementation. *Am J Clin Nutr* 1998;68:209-12.
- [31] Abdulazeez AA, Alo EB, Rebecca SN (2008). Carriage rate of human immunodeficiency virus infection among different ABO and Rhesus blood groups in Adamawa State Nigeria. *Biomed. Res.* 19:41-44.
- [32] Cook JD (1985). Measurement of iron status. A report of the international nutritional anemia consultive groups (INACG), New York: Washington DC.
- [33] GhaiCL(2007).In: Textbook of practical Physiology. Jaypee Broth.Med., Pub(P) Ltd., New Delhi, India.
- [34] Harvey P (2004). A strategic approach to anemia control, MOST, The USAID micronutrients program, Arlington, Virginia.
- [35] <http://health.nytimes.com/health/guides/disease/anemia/treatment.html> retrieved on 12.02.12.
- [36] Jennings D, Balme RH, Richardson JE (1956). Carcinoma of stomach in relation to ABO blood groups. *Lancet* 2:11.
- [37] Johar M, Al-Quaiz(2001).Iron deficiency anemia: A study of risk factors. *Saudi Med. J.* 22(6):490-496.
- [38] Khattak ID, Khan TM, Khan P, AliShah SM, Khattak ST, Ali A (2008). Frequency of ABO and Rhesus blood groups in district SWAT, Pakistan. *J Ayb. Med. Coll. Abbottabad* 20(4):127-129.
- [39] Maguire JL, de Veber G, Parkin PC (2007). Association between iron- deficiency anemia and stroke in young children. *Pediatrics* 120(5):1053-1057. November.
- [40] Mahajon BK (2006). Chapter 11, In: Methods in Biostatistics, 6th ed., Japee Brothers Med. Pub(P) Ltd. Pub, New Delhi, India.
- [41] Notebaert E, Chauny JM, Albert M (2007). Short-term benefits and risks of intravenous iron: A systematic review and meta-analysis. *Transfusion* 47(10):1905-1918. October.
- [42] WHO/UNICEF/UNU (2001). Iron deficiency anemia: Assessment , prevention and control. A guide for programme managers. Available from:http://www.who.int/nut/documents/ida_assessment_prevention_control.
- [43] World wide prevalence of anemia (1993-2005). WHO global database on anemia, ed. Beonoist BD, McLean E, Egli I, Cogswell M, 2008.
- [44] YeohGS(1960).Carcinoma of the stomach. *Singapore Med. J.* 1:140.

International Journal of Recent Development in Engineering and Technology
Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 15, Issue 01, January 2026)