
33

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 6, June 2025)

Comparative Analysis of Manual testing and Automated testing

with Artificial and Machine Learning Implementation

1Tapish Atreya, 2Dr.Ritesh Yadav

1M.Tech Scholar, Department of Computer Science and Engineering, RKDF-IST, SRK University, Bhopal, M.P, India
2Associate Professor, Department of Computer Science and Engineering, RKDF-IST, SRK University, Bhopal, M.P, India

Abstract— Artificial Intelligence (AI) and Machine

Learning (ML) have brought profound changes across

numerous sectors, with software development being no

exception. Within the software development lifecycle

(SDLC), software testing plays a vital role in validating the

quality and reliability of software products. Historically,

this testing phase has relied heavily on manual labor,

making it time-consuming and resource-intensive.

However, the rise of AI and ML has revolutionized this

process by enabling automation and smarter decision-

making. By leveraging AI and ML, software testing

becomes more efficient and effective. These technologies

facilitate the automation of complex activities such as

generating test cases, executing tests, and analyzing

outcomes. This automation not only accelerates the testing

timeline but also enhances the precision of defect

identification, thereby contributing to the delivery of

higher-quality software. This paper explores the integration

of AI and ML in software testing through a thorough review

of existing research, an evaluation of current tools and

methodologies, and the presentation of case studies that

highlight tangible benefits. The literature review offers a

broad perspective on recent advancements in AI and ML

applications within software testing, emphasizing key

techniques and findings from various studies. Furthermore,

the assessment of contemporary tools highlights the

functionalities of prominent AI-powered testing solutions

such as Eggplant AI, Test.ai, Selenium, Appvance,

Applitools Eyes, Katalon Studio, and Tricentis Tosca—

each known for their unique strengths and capabilities.

Included case studies provide practical examples of how AI

and ML have been applied across different industries,

demonstrating notable improvements in testing speed,

accuracy, and overall software quality. These examples

emphasize the adaptability and effectiveness of AI-

enhanced testing tools across diverse environments.

Additionally, the paper addresses challenges encountered

when incorporating AI and ML into software testing,

including concerns related to data integrity, algorithmic

complexity, and ethical implications.

Keywords— Artificial Intelligence (AI), Machine Learning

(ML), Software Automation, Cybersecurity, Secure

Software Development, Intelligent Testing, DevSecOps.

I. INTRODUCTION

1. The Impact of AI and ML on Software Testing:

Artificial Intelligence (AI) and Machine Learning (ML) are

cutting-edge technologies that have made a notable impact

across a wide range of sectors, including software

development. Within the software development lifecycle

(SDLC), testing plays a critical role in validating both the

quality and reliability of software products. Integrating AI

and ML into software testing can streamline and enhance the

process by automating intricate tasks, thereby reducing the

overall time and effort required for comprehensive

testing.Over the past ten years, advancements in AI and ML

have accelerated, particularly in their application to software

testing. This paper investigates how AI and ML are

transforming software testing by conducting a detailed

review of existing research, assessing modern tools and

methodologies, and showcasing case studies that highlight

the real-world advantages these technologies offer.

2. Evolution of Software Testing Practices: Software

testing has undergone significant transformation over the

years. In its early stages, testing was performed manually by

developers or specialized testers. As software systems

became more sophisticated, it became evident that more

organized and systematic testing methods were necessary.

This realization led to the introduction of automated testing

34

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 6, June 2025)

tools during the late 20th century. Despite their

advantages, these early tools often lacked flexibility and

required considerable manual intervention to update and

maintain test scripts. The emergence of Artificial

Intelligence (AI) and Machine Learning (ML) has ushered

in a new era of intelligent and adaptive testing solutions,

designed to address many of the limitations associated

with traditional testing approaches. AI- and ML-based

testing methods offer solutions to many inherent

constraints of manual and early automated testing, such as

scalability, maintenance, and responsiveness to changes in

software systems.

• Automatically generate and optimize test cases

• Reduce maintenance overhead

• Improve test coverage and fault detection

• This evolution represents a pivotal shift from rule-

based automation to data-driven, intelligent

testing, enabling greater efficiency, scalability,

and reliability in software quality assurance

II. LITERATURE SURVEY

2.1 The Role of AI in Software Testing

Artificial Intelligence (AI) is transforming software testing by

automating repetitive tasks, predicting failures, and enabling

more intuitive test generation. This section presents data and

visualizations to illustrate the impact of AI-driven tools on

software testing efficiency and effectiveness.

Table 1: Comparison of Manual vs. AI-Driven Testing

Aspect

Manual

Testing

AI-Driven

Testing (e.g.,

Eggplant AI,

Test.ai)

Test Case

Generation

Manual, time-

consuming

Automated,

rapid

Test Execution

Sequential,

slow Parallel, fast

Defect

Detection

Accuracy Moderate

High (predictive

analytics)

Adaptability to

Change Low

High (dynamic

learning)

Maintenance High Low

Effort

Requirement

Analysis Manual

Automated

(NLP-based)

Involvement of

Non-technical

Stakeholders Difficult

Easier (NLP

allows plain

language input)

By using deep learning models, Test.ai can recognize and interact

with complex and dynamic user interface elements, automating the

testing process without the need for traditional scripting. Its NLP

features further facilitate the automatic generation of test scenarios

from user stories or requirements, streamlining collaboration

between development and QA teams.

Chart 1: Time Reduction in Test Case Generation and

Execution

Time spent in

testing tasks

Task Manual testing

AI- Driven

testing

Test Generation 20 5

Test Execution 30 10

Result analysis 10 3

 Total 60 18

It shows the time deduction in Test Case generate and execution.

In Manual testing the time is prolonged. Hence, to over the

automating testing is implemented.

Table 2: Key Features of Leading AI-Driven Testing Tools

Tool AI

Techniques

Used

Key Features

Eggplant AI ML, NLP

Automated test

generation, predictive

analytics

Test.ai

Deep

Learning,

NLP

UI testing, scriptless

automation

Applitools

Eyes Visual AI

Visual validation, cross-

browser testing

Selenium

(AI add-ons) ML

Smart locators, self-

healing scripts

35

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 6, June 2025)

The table presents a comparative overview of four prominent

AI-powered software testing tools—Eggplant AI, Test.ai,

Applitools Eyes, and Selenium with AI add-ons—highlighting

the diversity in their underlying AI techniques and specialized

features. Eggplant AI leverages both machine learning (ML) and

natural language processing (NLP) to automate the generation

of test cases and apply predictive analytics. This dual approach

enables the tool to model user journeys, anticipate potential

failure points based on historical data, and dynamically

prioritize testing efforts for maximum coverage and efficiency.

Its NLP capabilities also allow it to interpret software

requirements written in plain language, making test creation

more accessible to non-technical stakeholders and reducing the

manual effort required for test maintenance. Test.ai, on the other

hand, employs deep learning and NLP to enable scriptless UI

testing. Applitools Eyes distinguishes itself through the use of

Visual AI, focusing on visual validation and cross-browser

testing. This tool uses advanced image comparison algorithms

to detect even the smallest visual discrepancies across different

browsers and devices, ensuring a consistent user experience and

catching issues that might be missed by conventional functional

tests. Meanwhile, Selenium—augmented with AI-powered add-

ons—integrates machine learning to enhance its traditional

automation capabilities. These add-ons introduce smart locators

and self-healing scripts, which enable Selenium to adapt to

changes in the application’s UI automatically. As a result, test

scripts become more resilient to frequent updates or

modifications in the software, significantly reducing the

maintenance burden on QA teams. Collectively, these tools

demonstrate how the integration of various AI techniques—

ranging from ML and deep learning to NLP and Visual

III. PROBLEM STATEMENT

1. Primary Problem Areas

1. Limited Adaptive Capability Current automation systems

operate within rigid, predefined parameters and struggle to adapt

to unexpected scenarios, environmental changes, or evolving

requirements. This limitation results in frequent system failures,

reduced reliability, and increased manual intervention needs,

ultimately undermining the core value proposition of

automation.

2. Inadequate Pattern Recognition and Anomaly Detection

Traditional automation lacks sophisticated pattern recognition

capabilities essential for identifying complex system behaviors,

predicting potential failures, and detecting subtle anomalies that

may indicate security threats or performance degradation. This

deficiency leads to reactive rather than proactive system

management approaches.

3. Scalability and Complexity Management Challenges As

software systems grow in complexity and scale, traditional

automation approaches become increasingly difficult to maintain,

configure, and optimize. The linear scaling limitations of rule-

based systems create bottlenecks that impede organizational

growth and technological advancement.

4. Insufficient Context Awareness Existing automation solutions

often operate in isolation without comprehensive understanding of

broader system context, business objectives, or environmental

factors. This limitation results in suboptimal decision-making and

potential conflicts between different automated processes.

2. Integration Complexity

The incorporation of AI and ML technologies into existing

automation frameworks presents significant technical hurdles,

including:

• Data Quality and Availability: AI and ML systems

require high-quality, representative datasets for training

and operation, yet many organizations lack sufficient data

governance practices or encounter data silos that limit

algorithm effectiveness.

• Real-time Processing Requirements: Software

automation demands real-time or near-real-time decision-

making capabilities, creating computational and

architectural challenges for AI/ML systems traditionally

designed for batch processing environments.

• Model Interpretability and Explainability: The "black

box" nature of many AI/ML algorithms conflicts with the

transparency and auditability requirements essential for

enterprise software automation, particularly in regulated

industries.

• System Integration and Interoperability: Incorporating

AI/ML capabilities into existing automation

infrastructure requires addressing compatibility issues,

API limitations, and architectural constraints that may not

have been designed to accommodate intelligent systems.

3. Operational Challenges

Resource Optimization and Cost Management AI and ML

36

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 6, June 2025)

integration introduces significant computational overhead and

resource requirements that must be balanced against automation

benefits. Organizations struggle to optimize resource allocation

while maintaining system performance and cost-effectiveness.

Skill Gap and Knowledge Transfer The successful

implementation of AI/ML-enhanced automation requires

specialized expertise that spans multiple domains, including

software engineering, data science, machine learning, and

domain-specific knowledge. Many organizations face critical

skill shortages that impede adoption and implementation efforts.

Quality Assurance and Validation Traditional software

testing and validation approaches are insufficient for AI/ML-

integrated systems, requiring new methodologies for ensuring

system reliability, accuracy, and behavioral consistency across

diverse operational scenarios

4. Business Impact

Organizations that fail to effectively integrate AI and ML into

their software automation strategies risk competitive

disadvantage through:

• Reduced operational efficiency and increased manual

overhead

• Limited scalability and growth potential

• Increased security vulnerabilities and system failures

• Higher operational costs and resource waste

• Diminished ability to respond to market changes and

customer demands

5. Innovation Barriers

The current state of AI/ML integration in software automation

creates systemic barriers to innovation, including:

• Reluctance to adopt advanced automation due to

implementation complexity

• Limited experimentation with intelligent automation

approaches

• Reduced organizational agility and technological

adaptability

• Inability to leverage data-driven insights for process

optimization

IV. CONCLUSION

Analysis of Manual Testing Results: Analysis of manual testing

outcomes across various project sizes reveals distinct patterns that

demonstrate the contextual effectiveness of manual testing

approaches. Small projects, typically characterized by dynamic

and agile development environments, benefit significantly from

the inherent flexibility of manual testing methodologies. These

projects often require rapid adaptation to changing requirements

and frequent iterations, making manual testing methods

particularly valuable as they can accommodate these dynamic

conditions without the overhead associated with maintaining

automated test scripts. The human element in manual testing

provides the necessary adaptability and creative problem-solving

capabilities that align well with the exploratory nature of small-

scale development efforts.

Medium-sized projects present a more complex scenario where a

hybrid approach proves most beneficial. In these environments,

manual testing is strategically applied in areas where human

insight and intuition are crucial, particularly in exploratory testing

scenarios and comprehensive functional testing where nuanced

understanding of user behavior and system interactions is essential.

Simultaneously, these projects begin to introduce automation for

repetitive tasks that can be standardized, creating a balanced

testing ecosystem that leverages the strengths of both approaches

while mitigating their individual limitations.

Large projects, however, demonstrate a different pattern where

manual testing becomes progressively less effective due to the

increased complexity and scale inherent in these systems. The

sheer volume of test cases, the complexity of system interactions,

and the need for frequent regression testing make purely manual

approaches impractical and inefficient. Consequently, manual

testing efforts in large projects are often supplemented or entirely

replaced by automated strategies to improve overall efficiency and

ensure scalability of the testing process. The comprehensive

analysis, utilizing both quantitative data from surveys and testing

metrics alongside qualitative insights gathered through detailed

interviews, reveals several key strengths of manual testing. Manual

testing demonstrates exceptional effectiveness in exploratory and

functional testing scenarios where human creativity and intuition

play critical roles in identifying potential issues. It proves

particularly valuable for identifying edge cases and unusual system

behaviors that might not be anticipated in automated test scripts,

as human testers can apply contextual understanding and creative

thinking to uncover these scenarios. Additionally, manual testing

shows superior adaptability for projects with frequently changing

37

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 6, June 2025)

requirements, as human testers can quickly adjust their approach

without the need for extensive script modifications or

redevelopment.

Analysis of Automation Testing Results: Automation testing

demonstrates significant advantages, particularly in large-scale

and complex projects where test cases require frequent

repetition and consistent execution. Large projects benefit

substantially from automation implementation, as it

dramatically improves productivity while providing reliable and

repeatable results. This advantage becomes particularly

pronounced in regression testing scenarios and performance

testing environments where consistent execution parameters are

crucial for meaningful results. The ability to execute

comprehensive test suites rapidly and repeatedly enables

development teams to maintain high-quality standards while

accelerating development cycles.Medium-sized projects present

a more nuanced scenario regarding automation adoption. While

these projects can certainly benefit from automation

implementation, medium-sized organizations often face

practical challenges in securing the necessary budget for initial

automation setup and the ongoing investment required for

maintaining automated test suites. The cost-benefit analysis for

medium projects requires careful consideration of the long-term

testing requirements against the upfront investment and ongoing

maintenance costs associated with automation

infrastructure.Small projects, particularly those characterized by

highly dynamic development environments, often find that the

cost and effort associated with automation implementation

outweigh the potential benefits. The rapid pace of change typical

in small projects can result in frequent modifications to

automated test scripts, potentially negating the efficiency gains

that automation is intended to provide. In these scenarios, the

overhead of maintaining automation infrastructure may exceed

the benefits gained from automated execution.The study reveals

several key advantages of automation testing that contribute to

its effectiveness in appropriate contexts. Automation

significantly improves efficiency and reduces overall testing

time, particularly for repetitive test cases that would otherwise

require substantial manual effort. It demonstrates exceptional

effectiveness in regression testing, performance testing, and

multi-platform testing scenarios where consistent execution and

comprehensive coverage are essential. Additionally, automation

increases overall productivity through the reuse of test scripts

across multiple testing cycles and projects, creating economies

of scale that benefit long-term testing strategies.

References

1. Mulla, M. M., & Jayakumar, S. (2021). Artificial

Intelligence in Software Testing: Applications and

Challenges. Procedia Computer Science, 192, 2203-

2212.

2. Amershi, S., et al. (2019). Software Engineering for

Machine Learning: A Case Study. Proceedings of the 41st

International Conference on Software Engineering:

Software Engineering in Practice, 291-300.

3. Chandola, V., Banerjee, A., & Kumar, V. (2009).

Anomaly detection: A survey. ACM Computing Surveys,

41(3), 1–58. https://doi.org/10.1145/1541880.1541882

4. Sommer, R., & Paxson, V. (2010, May). Outside the

closed world: On using machine learning for network

intrusion detection. In 2010 IEEE Symposium on

Security and Privacy (pp. 305–316). IEEE.

https://doi.org/10.1109/SP.2010.25

5. Ghosh, R., & Raj, P. (2020). Artificial intelligence for

software engineering: Challenges and opportunities.

arXiv preprint arXiv:2006.03875.

https://arxiv.org/abs/2006.03875

6. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,

T., Ebner, D., ... & Dennison, D. (2015). Hidden technical

debt in machine learning systems. In Advances in Neural

Information Processing Systems (NeurIPS), 28.

https://papers.nips.cc/paper_files/paper/2015/hash/86df7

dcfd896fcaf2674f757a2463eba-Abstract.html

7. Varshney, K. R., & Alemzadeh, H. (2017). On the safety

of machine learning: Cyber-physical systems, decision

sciences, and data products. Big Data, 5(3), 246–255.

https://doi.org/10.1089/big.2017.0007

.

