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Abstract—  The performance prediction of refrigeration 

systems is evaluated by analyzing the impact of various 

activation functions on the accuracy of neural networks in 

predicting the exergy of vapor compression refrigeration 

systems (VCRS) using R-410A and R-134a refrigerants. A 

comparative analysis is conducted on five commonly used 

activation functions—Sigmoid, ReLU, Tanh, Swish, and Leaky 

ReLU—to determine their accuracy and effectiveness. The 

study also explores the benefits and challenges of combining 

multiple activation functions to enhance prediction accuracy 

and address anomalies in performance analysis. Neural 

network models are developed using Python with TensorFlow, 

PyTorch, and Keras libraries, enabling efficient evaluation of 

the activation functions and simulation of the experimental 

setup. The research focuses on comparing the effectiveness of 

different activation functions in replicating experimental 

exergy results. The results indicate that the model trained using 

a hybrid approach with ReLU and Swish activation functions 

achieves a prediction accuracy with a mean absolute error 

(MAE) of just 0.02%.   

 Keywordss—Neural Networks,Vapor Compression 

Refrigeration (VCR),Activation Functions, Exergy, Coefficient 

of Performance (COP) 

I. INTRODUCTION 

Refrigeration systems are widely utilized as the source of 

industrial and domestic applications. It has certainly 

addressed that the traditional experimental approaches have 

involved an extensive trial-and-error method, which is time-

consuming as well as costly. Therefore, the integration of the 

artificial intelligence (AI) models has been introduced to 

enhance the prediction accuracy, experimental efforts and 

system optimization improvement. It has also focused on the 

AI-driven model to accurately imitate the experimental set-

up for refrigeration system, leveraging deep learning 

techniques with various activation functions. It is believed 

that the traditional two-stage cascade compression 

refrigeration systems have consumed significant electricity 

and contributed in environmental concerns with high fossil 

fuel dependence and refrigerant emissions. The flexibility of 

integrating vapor absorption refrigeration (VAR) with vapor 

compression refrigeration (VCR) to offer energy-efficient 

alternative and reducing electricity consumption by up to 

45%. It enables the dependency on the heat source 

temperature, enabling the use of AI with sustainable energy 

utilisation. document is template. 

AI has particularly dealt with the Artificial Neural Networks 

(ANNs) which has emerged on the valuable tool for 

predicting refrigeration system performance. It has 

minimized the reliance on the cost experimental setups. The 

selection has influenced the ANN accuracy for the activation 

functions. This has also demonstrated that the Leaky ReLU 

with bias and a weight scale of 2.0 achieves near-perfect 

accuracy, with an RMSE and predictive performance of 

128.26 and R² = 0.9992. The study implicates on the 

demonstration of comparative analysis between ANN 

predictions and experimental data confirming the reliability 

of the models in complex process linked with 

thermodynamics. Overall, the study focuses on the 

optimisation of the activation functions in ANN models, 

which enables accurate performance predictions for 

refrigeration systems and reduces the need for extensive 

experimental trials and promotes energy efficiency in 

cooling technologies. 
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II. LITERATURE REVIEW 

Exergy analysis is instrumental in identifying 

irreversibilities in thermal systems. In recent years, Artificial 

Neural Networks (ANNs) have gained significant attention 

due to their capability to model complex, non-linear 

relationships in thermodynamic assessments [3], [4]. The 

application of ANNs to refrigeration systems has led to 

several notable advancements, as outlined below: 

a) Exergy analysis of a vapor compression refrigeration 

system using ANN 

Bisht et al. [4] applied ANN models to predict the exergy 

destruction and efficiency of a vapor compression 

refrigeration system. The network was trained using 

operational parameters such as evaporator temperature, 

compressor work, and condenser temperature. This 

approach not only provided accurate exergy predictions but 

also reduced computational costs compared to traditional 

thermodynamic methods. The best performance was 

achieved using the ReLU activation function with an 

optimized number of hidden layers [7], [13]. 

b) ANN-based exergy analysis of a refrigeration system with 

ejector In a study conducted by Chen et al. (2019), exergy 

analysis was extended to refrigeration systems incorporating 

an ejector, initially supported by experimental data. The 

addition of the ejector helped enhance system efficiency by 

reducing compressor work. An ANN model was trained on 

both experimental and simulated datasets to predict exergy 

losses across various components effectively. The 

comparative study of activation functions revealed that the 

Swish function provided better performance and stability 

than ReLU and Sigmoid functions for this particular 

configuration [2], [8]. 

c) Exergy analysis of a refrigeration system using deep 

learning. Belman-Flores et al. [3] implemented a deep 

learning framework featuring multiple hidden layers to 

improve predictive accuracy. The study demonstrated that 

deeper architectures outperformed shallow networks, 

especially when employing the Leaky ReLU activation 

function [12], [22]. The findings suggested that deep 

learning. Further supporting this, Ding et al. [8] emphasised 

that the choice of activation function significantly influences 

ANN-based exergy analysis, particularly affecting model 

training speed, convergence, and predictive accuracy.The 

activation function relevance to exergy analysis are as 

follows: 

TABLE 1: 

 RELEVANCE OF ACTIVATION FUNCTION TO EXERGY ANALYSIS  

Activation 

Function  

Characteristics Relevance to Exergy 

Analysis  

Sigmoid Maps inputs to (0,1) 

range, vanishing 

gradient and smooth 

gradient  

It presents the binary 

classification tasks but 

not ideal for complex 

regression problem like 

exergy analysis due to 

slow convergence and 

saturation effects 

ReLU 

(Rectified 

Linear 

Unit) 

Outputs zero for 

negative inputs, 

linear for positive 

inputs and fast 

computation 

ANN models are 

commonly utilized for 

exergy analysis due to its 

efficiency and ability to 

handle non-linear 

relationships. It can 

suffer from dying ReLU 

problem with neurons 

becomes inactive.  

Tanh  Maps inputs (-1, 1) 

smoother than 

sigmoid and non-

linear 

It performs better than 

sigmoid by centering 

data around zero and 

improving convergence. 

It still faces gradient 

vanishing issues 

Leaky 

ReLU 

Similar to ReLU but 

allows the negative 

inputs in small form 

and prevent dying 

neurons 

Often used in deep 

learning based exergy 

analysis to improve 

model stability and 

preventing dead neurons 

specially deeper 

architectures.  

Swish Self-gated, non-

linear with small 

negative values 

Sigmoid and ReLU 

showing better 

convergence properties 

with the complex 

thermodynamic 

modelling. It has 

enhanced the prediction 

accuracy for exergy 

analysis  

Softmax Map inputs to 

probability 

distribution 

Focusing on 

classification problems 

and exergy analysis to 

deal with categorical 

output.  
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The integration of ANNs in exergy analysis have predicted 

accuracy and computational efficiency with promising 

results. The activation function has influenced the model 

performance with ReLU and Swish emerging for favorable 

options for regression-based exergy predictions. It has 

explored hybrid ANN architectures with the combination of 

deep learning techniques to enhance the accuracy and 

generalizability of exergy analysis model.  

 

III. PROPOSED ALGORITHM 

 

A. Activation Function and Exergy Analysis– 

Activation Function is a mathematical function which 

determines a neural network’s output based on the weighted 

sum of its inputs. This has introduced non-linearity have 

enabled the network to learn complex relationships between 

input and output variables. While, Exergy Analysis has 

approached evaluation of energy efficiency by 

determination of the useful work potential of the system. In 

refrigeration systems, the exergy analysis has identified the 

energy losses and inefficiencies in areas of optimization of 

performance and sustainability. The study signifies the 

contribution of the efficient and accurate modelling of 

refrigeration systems utilising the artificial neural networks 

(ANNs). This can evaluation of the performance of 

refrigeration systems which is time consuming but are 

aligned with data-driven energy systems and Exergy 

Analysis.  

Activation function has Rectified Linear Unit (ReLu) 

which is proposed by the soft-committee machine and 

explained the learning process in theory. It has also 

accelerated the good image classification tasks with good  

performance and sparsity and dispersion of ReLu. As per the 

Artificial Neural Network, the multi-model have deepened 

the research to be more superior with the activation function 

appears. 

The activation function is basically divided into 2 types such 

as linear activation functions and non-linear activation 

functions. It has maintained a constant, non-linear activation 

function to create more variation with utilization of neural 

network. The linear activation function has equation like 

straight line i.e., activation is proportional to input. 

                        𝑓 (𝑥𝑖)= k xi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where xi is the input of the activation function f of the ith 

channel and k is a fixed constant and output of the input to 

meet with the derivative with respect to xi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The activation function has provided the ease for the model 

to generalize the variety of data and to differentiate between 

outputs. This has typically analyzed the range and curves 

with sigmoid function, Tanh function, ReLu and Leaky 

ReLu. PReLu, RReLU and ELU. This has certainly address 

on the aim of network structure development and suitable 

activation function for this characteristic.  

 

Fig1 Artificial Neural Networks (ANN)model 

 

2.(a)Curve of Function 

 

2.(b) Curve of derivative 
Fig 2.Activation function and its derivatives 

 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 14, Issue 5, May 2025) 

31 

 

B. AI-Based Approaches in Exergy Analysis and 

importance in Refrigeration system– 

The exergy analysis has powerful tool with the quality and 

potential of energy within a system through identification of 

inefficiencies and optimization performance and reducing 

energy losses. The exergy analysis has precise and efficient 

way to derive the models and machine learning and deep 

learning aspects to integrate on the improvement of the 

accuracy of exergy calculations and enhancing the 

refrigeration system performance. AI methods have focused 

on the ML techniques such as Artificial Neural Networks 

(ANN) and Support Vector Machines (SVM) and Random 

Forest (RF) to predict the energy consumptions. The ANN 

can predict the Exergy with the large datasets and detection 

inefficiencies and propose corrective measures. AI-driven 

optimization techniques have optimized the control 

parameters to improve the efficiency of compressors, 

evaporators, and condensers. The AI in Exergy analysis for 

refrigeration system have enhance real-time monitoring, 

leading to energy saving and reducing the downtime and 

maintenance costs with the AI models to predict failures and 

fault. It has also presented the advanced functions showing 

superior learning capabilities.  

 

IV. EXPERIMENT AND RESULT 

 

The refrigeration system and experimental setup have 

focused on Vapor Compression Refrigeration System 

(VCRS) with Ejector. The integration of ejector has 

enhanced the pressure energy to utilize the refrigerant 

vapors. This method has improved the coefficient of 

performance (COP) to reduce compressor work input. The 

experimental set up have analyze the vapor compression 

refrigeration system with an ejector through experimental 

setup with the following key components.  

The compressor increases the pressure and temperature of 

refrigerant along with this condenser rejects heat from the 

refrigerant to the surrounding environment. The expansion 

valve reduces the entering the evaporator and absorbs heat 

and produces cooling effect. The Ejector enhances system 

efficiency by utilizing the pressure energy from high 

pressure refrigerant. The system is equipped with advanced 

sensors to capture the real-time data with temperature 

sensors and pressure sensors and flow rate sensors. The data 

collection process presents the system to runs continuously 

for data acquisition and total of 1000 data points with the 

recorded over time and data points to 10-minute intervals to 

ensure accuracy and representativeness.  

The data pre-processing for ANN model have developed on 

the efficient Artificial Neural Network (ANN) model with 

the data collection through preprocessing steps as followed:  

C. Normalization  

The normalization has presented input variables 

(temperature, flow rate, and pressure) with the scale of 

uniform range of (0,1). It has improved convergence speed 

and stabilizing training.  

Normalization Xnormalized = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

The relevant input features have selected based on 

correlation analysis with the low significance or high 

multicollinearity with the way to avoid redundancy. The 

selected features include Evaporator temperature (T_e), 

Condenser temperature (T_c), Compressor work input 

(W_comp), and Refrigerant mass flow rate (m_ref) and 

Ejector outlet pressure (P_ej) and Cooling Capacity 

(Q_cool).  

a) Exergy of Streams 

- Ex_e = m_ref * (h_e - h_0 - T_0 * (s_e - s_0)) 

- Ex_c = m_ref * (h_c - h_0 - T_0 * (s_c - s_0)) 

- Ex_g = m_sol * (h_g - h_0 - T_0 * (s_g - s_0)) 

- Ex_a = m_sol * (h_a - h_0 - T_0 * (s_a - s_0)) 

b)  Exergy of Heat Transfer: 

- Ex_Q_e = Q_e * (1 - T_0 / T_e) 

- Ex_Q_c = Q_c * (1 - T_0 / T_c) 

- Ex_Q_g = Q_g * (1 - T_0 / T_g) 

- Ex_Q_a = Q_a * (1 - T_0 / T_a) 

c) Exergy Destruction: 

- Ex_D_comp = W_comp - (Ex_e - Ex_c) 

- Ex_D_g = Q_g - (Ex_g - Ex_a) 

- Ex_D_a = Q_a - (Ex_a - Ex_g) 

d)  Exergetic Efficiency: 

1. VCC Exergetic Efficiency: 

- η_VCC = (Ex_e - Ex_c) / (W_comp + Ex_Q_e - Ex_Q_c) 

2. AC Exergetic Efficiency: 

- η_AC = (Ex_g - Ex_a) / (Q_g + Ex_Q_g - Ex_Q_a) 

3. Cascaded System Exergetic Efficiency: 

- η_cascaded = (Ex_e - Ex_c) / (W_comp + Q_g + Ex_Q_e - 

Ex_Q_c - Ex_Q_g + Ex_Q_a) 
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D. ANN Model Development Using EES Tool 

Engineering Equation Solver (EES) Tools which is powerful 

with the complex thermodynamics equations with the way 

to facilitate precise modeling of exergy losses, refrigeration 

system performance and energy transfer. The ANN model is 

designed to predict system performance based on 

experimental data where Input layers with six neurons and 

hidden layers through three layers within 10 neurons each 

and output layer to predict exergy efficiency and system 

performance. The activation function Rectified Linear Unit 

(ReLU) being in hidden layers and linear activation in output 

layer. The training algorithm have added on 

backpropagation with Adam optimizer and Mean Squared 

Error (MSE) as loss function.  

The training process is divided the data into two parts i.e., 

training (80%) and testing (20%) tests. This model 

undergoes with 1000 iterations to minimize errors. It has 

added on the performance metrics as R2, RMSE, and MAE 

to be evaluation. The ANN model is validated have test data 

in comparison with experimental results with the high 

prediction accuracy. The Swish activation function performs 

best with R2=0.9992 and RMSE=128.26.  

 

C. Results 

The AI-driven model has certainly utilised experimental data 

from the refrigeration system under various operating 

conditions. It has focused on the predictive accuracy of 

different activation functions, both individually and in 

combination. The Performance Metrics have evaluated key 

metrics, including Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), R-squared (R²), and Mean Absolute 

Percentage Error (MAPE). 

TABLE 2: EXPERIMENT RESULT 

Activation 

Function 
MAE RMSE R2 MAPE 

Sigmoid 0.015 0.025 0.92 3.1 

Tanh 0.013 0.023 0.94 2.8 

ReLU 0.009 0.017 0.97 2.1 

Leaky ReLU 0.008 0.015 0.98 1.9 

Swish 0.007 0.014 0.99 1.7 

Combined 
(Swish+Leaky 
ReLU) 

0.005 0.012 0.995 1.2 

 

Table 2 show the best performance of the achieved hybrid 

combination of Swish and Leaky ReLU with demonstration 

of R2 value of 0.995 and lower error rates across all metrics.  

The impact of Activation functions has focused on the 

Sigmoid and Tanh functions performed relatively poorly in 

comparison to ReLU based activations. The vanishing 

gradient problem led to slower convergence and lower 

predictive accuracy. Tanh have certainly exhibited on the 

gradient saturation of large input values and restricting the 

learning efficiency. ReLU and Leaky ReLU have certainly 

presented the non-saturating nature where dying neuron 

issues were refrigeration systems and parameters were likely 

to present negative values. The Swish function performed 

have allowed smooth gradients and avoided neuron dying 

problems. This has Swish Function to generalize across 

unseen refrigeration performance scenarios. The hybrid 

combination of Swish and Leaky ReLU provided superior 

performance and ensuring higher accuracy and lower error 

rates. To validate the AI model’s accuracy, it has compared 

the real-world experimental refrigeration system data where 

the actual vs. predicted cooling load and coefficient of 

performance (COP) have matched the actual performance 

trends with deviation of less than 1.2%. Other than this, the 

activation function exhibited on the higher discrepancies 

with sigmoid and Tanh models derivation by up to 5% under 

extreme conditions. High accuracy of hybrid activation 

function model suggested the AI-driven predictive models to 

replicate complex refrigeration system behaviors 

effectively.  

Sensitivity analysis of key parameters was evaporator 

temperature (Te), Condenser Temperature (Tc), Compressor 

Power Input (P) and Mass Flow Rate (m). The hybrid 

activation model exhibited on a strong adaptability across all 

parameter variations. .  

TABLE-3 

EXPERIMENT RESULT 

 

Activation Function 
Training Time 

(sec) 
Convergence 

Epochs 
Sigmoid 320 150 
    Tanh 290 135 
ReLU 180 95 
Leaky ReLU 165 85 
Swish 140 80 
Combined 

(Swish+Leaky ReLU) 
120 65 
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The models have struggled with extreme values leading to 

high errors rates beyond the certain threshold. This has led 

to sensitive yet small compressor power changes but highly 

sensitive to evaporators and condenser temperature 

fluctuations.  

Table 3 shows computational efficiency and training time 

with the hybrid model to achieve the fastest training time 

(120 sec) and fewest required epochs (65) to reach 

convergence. This has certainly ReLU and Leaky ReLU to 

improve training speeds but Swish+ Leaky ReLU was the 

most efficient.  

The findings have suggested on the AI-driven models to 

replace physical experimental setups and reducing time and 

cost for refrigeration system performance testing. The 

hybrid activation function model to be applied for real-time 

predictive maintenance and optimization of refrigeration 

systems. In future, this enhancement has adaptive activation 

function or transformer based deep learning architectures.  

 

V.DISCUSSION 

The study significantly lies on the contribution of the 

efficient and accurate modeling of refrigeration system using 

Artificial Neural Networks (ANNs) with conventional 

experimental set-ups and evaluation of the performance of 

refrigeration system to consume time and resource intensive 

procedure. The study holds ANN based models to vary with 

conditions and enable better decision-making and design 

efficiency. The industry has remark on the smart and data-

driven energy systems with the potential contribution to 

sustainability and energy efficiency.  

 

Fig 3.a 

 

 
 

       

Fig3.b 

Fig 3.c 

                                           Fig 3.d  

Fig3.(a)Non-linearity of Activation Function(b)ANN 

Activation Function for enhancing Capacity(c)Facilitating 

learning(d)Training speed and stability 
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Fig 4. a 

 

 

 

 

 

 

 

 

 

Fig 4.b 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.d 

 

Fig 4.d 

Fig4.(a)LeakyReLUActivation (b)Swish Activation(c)Sigmoid Activation 

COP(d) Sigmoid Activation+ReLU Activation COP 

 

Table 1 shows the role of activation function in training a 
neural network model with the break of the linearity of 
the model that enables the non-linear relationships 
between inputs and outputs. This has complex data 
distribution and increasing the network ability for non-
linear activation functions. The function has helped the 
network learn by the introduction of a non-linear 
transformation to make it easier to optimize the model’s 
parameters.  
The results have analyse the best-performing activation 
function (Swish) to be demonstrating the superior 
performance. Swish is defined as:  

𝑓(𝑥) = 𝑥 ∗ 𝜎(𝑥) 
Where σ (x) is the sigmoid function and ReLU have set 
negative values to zero. However, Swish allows small 
negative values to pass through and enhancing model 
learning in complex scenarios. It has self-gated with the 
smooth transition and improving the gradient flow and 
enabling accurate modelling of non-linear relationship in 
exergy analysis.  
The key advantage for the Swish activation in exergy 
analysis using ANNs have certainly aid on better gradient 
flow. However, ReLU have cause neurons to die i.e., 
output to zero for negative values and Swish to maintain 
smooth gradients and improving training stability.  
The Swish Activation in exergy analysis using ANNs to be 
compared with Tanh and ReLU and Swish to enable deeper 
networks to generalize better and overfitting. Swish has 
certainly achieved lower mean squared error (MSE) and 
mean absolute percentage error (MAPE) in exergy 
prediction models. The Swish activation function have 
accelerated convergence during ANN training and 
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requiring fewer iterations to reach optimal performance.  
The experimental results from ANN-based exergy analysis 
have showcase the models utilize the Swish Activation 
function outperform those using traditional activation 
functions i.e., ReLU, Tanh, Sigmoid. The comparison with 
ReLU have showcase the Swish achieving 5-10% lower 
error rates compared to ReLU in exergy predictions for 
highly non-linear relationships. The comparison of Tanh 
and Sigmoid focuses on the Swish maintain a more stable 
gradient flow to avoid vanishing the gradient issues 
through sigmoid and Tanh for particular in deep networks. 
Furthermore, the existing studies have proved that the 
ANN models to improve accuracy with Swish Activation 
compared to previous studies identified in literature that 
relied on ReLU and Leaky ReLU. This has processed with 
the Swish-based ANN model produced closer to the results 
to exergy measurement within experiment confirming the 
reliability of predicting exergy destruction and efficiency.  
The Swish Activation function has proven to be an 
effective choice for ANN based exergy analysis improving 
prediction accuracy and training efficiency. The future 
research can explore optimize Swish-based architectures 
for different thermal systems that validate on the 
advantages over traditional activation functions.  

 

VI. CONCLUSION 

 

The Swish Activation Function has outperformed the other 

activation functions (ReLU, Tanh, Sigmoid) in predicting 

exegetic efficiency to provide better gradient flow, improved 

accuracy, and faster convergence. The ANN model 

developed using the Engineering Equation Solver (EES) tool   

successfully mimics the experimental setup, demonstrating 

high reliability in exergy analysis. It is recommended that 

the AI-based approaches investigate on the deep 

reinforcementlearning (DRL), convolutional neural 

networks (CNNs) and transformer models for enhancing the 

exergy prediction. The comparison of ANN models with 

hybrid AI techniques including algorithm has optimize the 

predictive accuracy. This can extend the ANN model to 

absorb refrigeration and cascade refrigeration and CO2 

transcritical systems to evaluate its adaptability. It performs 

multi-objective optimization combined with the exergy and 

economic analysis of the practical implementation.   
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