
 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 12, Issue 01, January 2023) 

55 

An AI Model Based Defect Prediction in Software 
Kishore Kumar Mishra

1
, Pawan Agarwal

2
 

1,2
Deparment of CSE, Compucom Institute of Technology and Management, Jaipur 

Abstract— One of the crucial components of software is 

software quality. Software design complexity is rising in response 

to rising demand, increasing the likelihood of software flaws. 

Tester improve the quality of software by fixing defects. 

Consequently, the study of flaws greatly raises the quality of 

software. The complexity of software also contributes to a greater 

number of flaws, making human detection a laborious procedure. 

The goal of this project is to create methods for the automatic 

detection of software flaws. In this research, we examine the 

performance of cutting-edge machine learning techniques for 

software defect classification. For this research, we used seven 

datasets from the NASA archive repository. Gradient Boosting 

and Neural Network classifiers outperform other methods in 

terms of performance. 

Keywords— Software Testing, Quality Assurance, Machine 

Learning, and NASA Promise Dataset. 

I.INTRODUCTION 

The software industry is evolving quickly as a result 

of rising demand and technology. Defects are 

unavoidable in software since people design it for the 

most part. Defects can often be described as unwanted or 

unacceptable changes to software programmes, 

documents, and data[1].The product manager could 

misinterpret the needs of the customer during the 

requirements analysis, which could lead to a defect that 

persists throughout the system design stage. 

Inexperienced coders may also be to blame for errors in 

the code. Defects have a substantial impact on the 

quality of software, and they can have serious 

repercussions in the aerospace and health care 

industries. If the problem is found after deployment, it 

puts a strain on the development team because they will 

have to redesign some software components, which will 

raise the price of the project. Defects are a nightmare for 

well-known organizations. Customer dissatisfaction 

damages their reputation and, as a result, reduces their 

market share. 

Software testing has consequently become one of the 

primary areas of concentration for findus trial research 

[2]. Additional manual methods take a lot of time and 

are ineffective as a result of the increase in software 

complexity and development. Automatic categorization 

of faults has been a popular topic in study due to the 

emergence of machine learning.  

 

 

In this study, we first describe software defect details, 

including the numerous categories that are available in 

the literature, and then we discuss the manual 

categorization techniques that have been suggested by 

different academics. The analysis of the most advanced 

machine learning techniques for automatic software 

detection is presented last. 

II.  CONCEPTS AND OVERVIEW OF SOFTWARE DEFECTS 

A.Concept of software defects 

This article uses the IEEE729-1983 (Standard 

Glossary of Software Engineering Terminology) to 

characterise defects as, for example, programming 

faults, errors, and failures because analysts frequently 

find it difficult to discern between software defects and 

those. From the inside of the product, flaws are blunders 

and errors made during maintenance or product creation. 

A flaw, from an external perspective, is a breach of or a 

failure of the framework or system to carry out 

particular functions[3,4]. The list of ideas that are 

frequently confused with flaws is as follows. 

1. Fault: The software runs in an internal state that is 

inappropriate and does not perform as expected by the 

client. We can think of it as a flaw that could lead to a 

software fault or disregard normal dynamic 

behaviour. 

2. Failure: This is when the client rejects the outputs 

that the software generates while it is running. 

Consider this: if the framework is unable to satisfy 

the   patch edasset's execution requirements, resulting 

in a loss of execution capacity and failure to meet 

client capabilities. 

3. Error: It is introduced by people and transforms into 

fault under particular circumstances. It is present 

across the whole software life cycle, including in the 

design, data structure, code, requirements analysis, 

and other carriers of the software[5]. 

The quantity of flaws determines the quality of 

software. A high number of flaws negatively impacted 

customer satisfaction, increased costs for the company, 

and slowed testing. Im demonstrating that test 

productivity is essential to managing faults in order to 

reduce expenses. 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 12, Issue 01, January 2023) 

56 

B. Main research directions of software defects 

1.  Managing software defects 

The primary focus of defect management is the 

gathering, statistical analysis, and use-ful recording of 

faults. 

Engineers have created numerous robotized defects 

management technologies to increase management 

productivity. Currently, the most widely used tools in 

the sector  are Bugzilla, an open-source bug tracking 

framework offered by Mozilla, and JIRA, distributed by 

Atlassian. These two tools don't have a more 

professional-found examination or specific grouping of 

faults, but they do record the transactions, attributes, and 

statistici cal information of defects. Classification and 

defect analysis play a significant role in defect 

management. In order to examine and arrange 

abnormalities, it is necessary to further explore the data 

stored in JIRA and Bugzilla. 

2.  Investigation of software defects 

Effect analysis is frequently used by software 

developers to assess programming and development 

quality. Software defect analysis is a tactic for defining 

perfection and identifying the causes of flaws. The goal 

of software defect analysis is to enable analysts to 

identify, track down, assess, and enhance test 

effectiveness. The three main categories of defects 

analysis methodologies are qualitative analysis, 

quantitative analysis, and attribute analysis [4]. Root 

Cause Analysis (RCA) and Software Fault Tree Analysis 

are two of the most common qualitative analysis 

techniques (SFTA). Single attribute analysis and multi-

attribute analysis are the two most popular divisions of 

attribute analysis. 

3. Classification of software defects 

Different and intricate software flaws exist. The 

ability to organise and aggregate flaws more clearly 

can help programmers evaluate the quality of their 

work, increase the productivity of analysts, and alleviate 

the burden of analysis. The suggestion of repair 

techniques and reuse test situations can be aided by 

classification [2]. It can understand how flaws are 

distributed according to the Through categorization and 

analysis, software faults are prevented from occurring 

frequently, the software development cycle is greatly 

enhanced, and software quality is so increased [6,7]. 

Software defect analysis includes software defect 

classification as a key component. Defect classification is 

extremely important since the results directly affect the 

defect analysis process.  

 

Software defect classification has previously been 

divided into two categories: programmed/automatic 

classification and human classification. 

1. Manually classifying software flaws a software flaw 

Manual classification denotes that examiners classify 

flaws according to their knowledge of them. First, 

researchers established the optimal classification of 

faults. Based on their experience, they identify the 

flaw and type of defect. However, this strategy's 

classification cycle is very difficult and requires a 

huge crew. A lot of data analysis will result in a much 

slower classification speed than the computer because 

of limited human energy and memory, which will 

consume a lot of time and resources. 

2. Automatic classification of software defects: To 

reduce development costs and improve development 

productivity, individuals are more inclined to use 

computers to  automatically classify defects. 

Specialists are attempting to locate a straight forward 

method to classify defects, and the ascent of AI and 

machine learning has made the automatic 

classification of defects a hotspot for industrial 

research. 

III. SOFTWARE DEFECTS MANUAL CLASSIFICATION 

METHOD 

The quantitative analysis of faults is based on the 

classification of defects. Every individual distinguishes 

the defect type differently, for example, database type, 

code type, operation type, etc., due to the multiple 

components that produce flaws. Each category can 

continue to be subdivided; for instance, code categories 

could be divided into task errors, variable definition 

errors, etc. There are numerous classification techniques. 

The classification methods are also fairly complex 

because different classification techniques need be used 

for diverse analysis goals. Following are a few typical 

annual classification methods: 

A. Orthogonal Defect Classification 

Orthogonal Defect Classification (ODC), a different 

classification method, was introduced by T.J. Watson of 

I BM in 1992 [8]. IBM agrees that there should be no 

convergences, all defect classes should be orthogonal to 

one another, and each classification should be 

independent of the others. There shouldn't be a flaw that 

can occur with one categorization but also occur with 

another classification. Additionally, classes must 

completely encompass all problems, and there must be 

no defects that cannot be classified under any of the 

categories.  



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 12, Issue 01, January 2023) 

57 

ODC identifies defects in detail, covers all phases of 

software development, and applies to any software 

product since the main goal of the organisation is to 

enhance the development process. ODC uses a variety of 

attributes to characterise the characteristics of defective 

elements. Eight fault attributes are defined in the most 

recent version [8]. The following eight classes of 

software flaws are determined by the characteristics of 

these traits: The following terms are used: assignment, 

verification, algorithm, timing, interface, function, 

association, and documentation. 

B. Standard classification for Anomalies 

The IEEE proposed the IEEE standard classification 

for anomalies [9] to provide software anomalies with a 

unified classification standard. The sestandard covers the 

entire software life cycle, effectively identifies, tracks, 

and optimises the cycle of development. 

Failure classification and Defect classification are 

defined by the standard. Individuals must choose 

different attributes for classification, break down the 

classification findings, and determine whether to utilise 

the Failure classification method or the Defect 

classification technique initially before they can begin 

eclassifying Anomaly categorization can be divided into 

eight categories: computational issues, interface/timing 

issues, logical issues, data issues, data processing issues, 

document quality issues, documentation issues, and 

difficulties with cement. Each class can also be broken 

down further into more specific subclasses.This 

technological solution can provide relief for the project's 

requirements. As a result, the approach is more 

dependent on the executive's level of expertise. 

Individual subjective criteria, however, will significantly 

reduce the classification influence. 

C. Thayer classification 

Using error reports submitted by researchers during 

testing and client feedback, Thayer et al. categorise 

errors in their inclination [10,11]. This method 

categorises errors into global variable errors, 

requirement implementation errors, document errors, 

personnel operation errors, and logic, calculation, data 

processing, I/O, support software, operating system, 

interface, configuration, preset database, user demand 

changes, repeated, and errors. unidentified property error 

Additionally, they can be divided into 164 subcategories. 

This approach not only examines software problems 

but also system and employee operation errors. 

 

 

It is widely and cautiously employed. The mistakes 

can be changed by developers, which is helpful. In any 

case, this method is unacceptable for streamlining the 

software development process because it doesn't take 

into account the causes of the issue. 

D. Roger classification 

Roger's taxonomy splits software flaws into 12 

categories based on their root causes: intentional 

deviation specifications (IDS), insufficient or incorrect 

specifications (IES) [12]. Misunderstandings in 

customer communications (MCC), etc. The 

methodology analyses the reasons behind the method's 

and strategy's introduction since the classification 

strategy is typically simple, the defect information is 

scant, the standard is unreliable, and the analyzability 

isn't high. 

E. Defect prevention classification of IBM 

The IBM defect prevention classification method was 

proposed in 1990 by R. G. Mays and colleagues at the IBM 

Research Center. This method is similar to the STFA, 

which classifies flaws using causal analysis and iteratively 

until it is impossible to categorise them once more while 

taking the defect's introduction time into account. This 

approach divides defect categories into categories such as 

education, negligence, text errors, incorrect communication, 

etc. This method is also susceptible to abstract elements that 

result in a wide range of analytical findings for different 

people. 

F. Putnam classification 

It is incorrect to categorise all phases with coding 

errors classification models because the defects exist 

throughout the entire software development cycle, it is 

not comprehensive to consider just the errors in the 

coding stage, and the error attributes produced during 

each phase of requirement analysis and system design 

are different. a result of this. Numerous faults that setf or 

wardthe classification method for Putnam's problems 

were examined by Putnam et al. [13]. Considering the 

diverse characteristics of numerous flaws throughout the 

development cycle and in accordance with when they 

first appeared, The flaws are divided into six categories: 

system design flaws, requirement analysis flaws, 

algorithm flaws, document flaws, performance flaws, 

and interface flaws. Using defect features, the approach 

groups defects into classification tree nodes. There is 

no code problem; this technique is only being taken into 

consideration during the development stage. 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 12, Issue 01, January 2023) 

58 

G.Michael classification 

Michael presented two classification strategies[14]: 

classification of defect sgenerated by code and 

classification of modules in software projects—to 

evaluate the relationship between modules and defects. 

He thinks that modules and fault categories have a lot in 

common. For instance, interface modules are prone to 

interface flaws, while calculation modules are prone to 

variable mistakes, calculation problems, etc. This 

method of categorization divides defects into eight 

classes: computation type, data type, interface type, 

control logic type, platform type, user interface type, 

document type, and structure type. The strategy is 

accurate in classification, directly related to the module, 

and the logic is simple enough to assist the developer in 

identifying the flaw. Numerous analyses prove that the 

technique is a significant tactic for studying how to 

classify software defects[15]. 

Based on the optimizer's selection. 

The most popular optimizer, which was also utilised 

in this experiment, is Adaptive Moment Estimation 

(ADAM) [25]. 

IV.   CONCLUSION 

Software flaws can negatively affect software quality, 

which can be problematic for both customers and 

developers. Manual software identification has become a 

challenging and time- consuming operation as software 

designs and technology have become more complicated. 

Consequently, during the past few years, industrial 

research on automatic software identification has picked 

up steam. In this study, we attempt to address this issue 

using machine learning and deep learning. We examine 

the outcomes of state-of-the- art machine learning 

methods using seven datasets from the NASA Promise 

dataset repository. There is still great room for 

development in this subject. In addition to thinking of 

fresh approaches that make use of sophisticated deep 

learning algorithms, academics should concentrate more 

on data gathering. 

REFERENCES 

[1] Y. Cai, Software reliability engineering foundation, Tsinghua 

university press,1995. 

[2] J. Gao, L. Zhang, Z. Fengrong and Z. Ye, "Research on Software 

Classification," in Information Technology, Networking, Electronic 

and Automation Control Conference, 2019. 

 

 

 

 

[3] I. C. Society, "IEEE 729-1983- IEEE Standard Glossary of Software 

Engineering Terminolo gy,"1982. 

[4] W. Bi, "Research on Software Defect Classification  and Analy sis, 
"Computer Science, 2013. 

[5] X. Yang and M. Duan,"Researcho f Software Defect Anal ysis 
Technology," Computer Engineering & Software, 2018. 

[6] J. Collofello and B. P. Gosalla, "An application of causal analysis to 

the software modification process," Software: Practice and 
Experience, vol. 23, 1993. 

[7] J. W. Horch, Practical Guideto Software Quality Manag ement, 
Artech House, 2003. 

[8] R. Chillarege, I. Bhandari, J. Chaar, M. J. Halliday, D. S. Moebus, B. 

K. Ray and M.-Y. Wong, "Orthogonal Defect Classification - A 
Concept for In-Process Measurements, "IEEE Transactions on 

software Engineering, vol. 18, pp.943-956,1992. 

[9] S. &. S. E. S. Committee, "IEEE 1044-1993 – IEEE Standard 

Classification for Software Anomalies, "IEEE, 1993. 

[10] X. Huang, Softwarere liability, safety and quality assura nce, 
Electronic Industry Press, 2002. 

[11] L. Meng-ren, "Research on Software Defects Classification, 
"Application Research of Computers,    2004. 

[12] R. Pressman, Software engineering: apractitioner's approach, 

Palgrave Macmillan, 2005. 

[13] L. Putnam and W. Myers, Measures for excellence: reliable software 

on time, within budget, Prentice Hall Professional Technical 
Reference,1991. 

[14] I. Raphael and C. Michael, "Fault links: identifying module and faul 
types and their relationship, " 2004. 

[15] L. Macaulay, Human-computer interaction for  software designers, 

Itp-Media, 1995. 

[16] "NASA Promise Dataset Repository". 

[17] I. T. Jolliffe and J. Cadima, "Principal component analysis: a review 
and recent developments, "Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, 

vol.374,2016. 

[18] L. Breiman, "Random Forests," Machine Learning, vol.45,pp.5-

32,2004. 

[19] Y. LeCun, Y.  Bengio and G. Hinton, "Deep learning," Nature, 

vol.521, pp.436-444,2015. 

[20] "Logisticregression," Wikipedia. 

[21] "Naïve Bayes," Wikipedia. 

[22] "Gradient Boosting Classifier," Wikipedia. 

[23] "Support Vector Machine," Wikipedia. 

[24] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T.Duan, D. Ding, 

A. Bagul, C. Langlotz, K. Shpanskaya, M. Lungren and A. Ng, 

"CheX Net: Radiologist- Level Pneumonia Detection on Chest X-
Rays with Deep Learning,"Arxiv, vol.abs/1711.05225, 2017. 

[25] J. Baand D. P. Kingma, "Adam: A Method for Stochastic 

Optimization," Clinical Orthopaedics and Related Research, 
vol.abs/1412.6980,2015. 


