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Abstract— This paper presents review of performance of 

Montgomery modular multiplication algorithm using VLSI 

architecture. The Montgomery algorithm is a fast modular 

multiplication method frequently used in cryptographic 

applications, in which the efficiency of cryptosystem depends 

on the speed of modular multiplication. This study provides 

the comparison between different modifications done in 

Montgomery modular multiplication. 
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I. INTRODUCTION  

Montgomery modular multiplication, all the more 

generally alluded to as Montgomery multiplication, is a 

technique for performing quick modular multiplication. 

Given two numbers an and b and modulus N, the 

established modular multiplication calculation registers the 

twofold width item stomach muscle mod N, and after that 

plays out a division, subtracting products of N to offset the 

undesirable high bits until the rest of by and by not as much 

as N. Montgomery decrease rather adds products of N to 

offset the low bits until the outcome is a various of a 

helpful (for example power of two) consistent R > N. At 

that point the low bits are disposed of, creating an outcome 

under 2N. One last restrictive subtract decreases this to not 

as much as N. This method dodges the unpredictability of 

remainder digit estimation and amendment found in 

standard division calculations.  

The outcome is the ideal item separated by R, which is 

less badly designed than it may show up. To increase an 

and b, they are first changed over to Montgomery structure 

or Montgomery portrayal aR mod N and bR mod N. 

Whenever increased, these produce abR2 mod N, and the 

accompanying Montgomery decrease produces abR mod N, 

the Montgomery type of the ideal item. Changing over to 

and from Montgomery structure makes this slower than the 

ordinary or Barrett decrease calculations for a solitary 

duplicate. Be that as it may, when performing numerous 

multiplications consecutively, as in modular 

exponentiation, middle of the road results can be left in 

Montgomery structure, and the underlying and last 

transformations turn into an irrelevant portion of the 

general calculation.  

Numerous essential cryptosystems, for example, RSA 

and Diffie– Hellman key trade depend on math activities 

modulo an extensive number, and for these cryptosystems, 

the calculation by Montgomery multiplication is quicker 

than the accessible alternatives. 

Multiplication: Cryptographic applications don't use 

negative numbers; therefore our digit-multiplication circuit 

performs only unsigned multiplications. The products are 

accumulated (added to a 32…50-bit register) but only 

single digits are extracted from these registers and stored in 

memory. 

 
Figure 1: MMM 

For operand sizes in cryptographic applications the 

school multiplication is the best, requiring simple control. 

Some speed improvement can be expected from the more 

complicated Karatsuba method, but the Toom-Cook 3-way 

(or beyond) multiplication is actually slower for these 

lengths. An FFT based multiplication takes even longer 

until much larger operands (in our case about 8 times 

slower). 

II. LITERATURE SURVEY 

A. A. H. Abd-Elkader et al.,[1] This brief presents 

FPGA-based upgraded execution of Montgomery Modular 

Multiplier (MMM) design. The clever engineering of the 

proposed plan upgraded the greatest recurrence of the plan 

and furthermore the involved region on the designated 

FPGA.  
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A Xilinx Virtex-6 FPGA execution of the proposed 

engineering contrasting and other related plans uncovered 

that, our plan possesses the littlest region, and the 

proficiency is upgraded in the reach between 1.2 to 11.7 

times the productivity of other significant plans. The 

proposed plan is executed as a modular multiplier for 

lightweight elliptic bend cryptography (ECC) over broad 

GF(p). The proposed design is designated the equipment 

execution of lightweight cryptographic modules utilized on 

the Framework on Chip (SoC) and Web of Things (IoT) 

gadgets. 

S. M. - H. Farzam et al.,[2] present a pipelined 

Montgomery multiplier customized for SIKE primes. The 

inertness of this multiplier is far more limited than that of 

the past work while its recurrence contends with the most 

elevated appraised ones. The execution results on a Virtex-

7 FPGA show that this multiplier works on the time, the 

region time item (AT), and the throughput of processing 

modular increase by something like 2.30, 1.60, and 1.36 

times over SIKE primes separately. We have additionally 

fostered a central processor like design to perform SIDH 

and SIKE utilizing a few cases of our modular multiplier. 

Utilizing four multipliers on a Virtex-7 FPGA, the 

exemplification and the decapsulation of SIKE can be 

performed something like 1.45 times quicker while 

working on the No less than 1.35 times over all SIKE 

primes. 

F. Pajuelo-Holguera et al.,[3] This article subtleties a 

quick and proficient execution of the Montgomery Modular 

Increase by exploiting equal multipliers and adders. This 

execution was modified in significant level union language 

and tried on a FPGA gadget. To test the exhibition of the 

proposition, a consecutive variant of the calculation was 

likewise executed in equipment. Besides, we contrasted the 

equal execution and a product form and with five 

commitments from the writing. Along these lines, we found 

that our proposition works on the presentation of any 

remaining executions. 

M. - H. Farzam et al.,[4] Public key cryptography lies 

among the main bases of safety conventions. The 

exemplary occurrences of these cryptosystems are as of 

now not secure when an enormous scope quantum PC 

arises. These cryptosystems should be supplanted by post-

quantum ones, for example, isogeny-based cryptographic 

plans. Supersingular isogeny Diffie-Hellman (SIDH) and 

key exemplification (SIKE) are two of the main such plans. 

To work on the exhibition of these conventions, we have 

planned a few modular multipliers. These multipliers have 

been executed for every one of the excellent fields utilized 

in SIKE cycle 3, on a Virtex-7 FPGA, showing a time and 

region time item improvement of up to 60.1% and 64.5%, 

separately.  

These multipliers are likewise reasonable for 

applications like RSA, as shown by executions for 512-

digit, 1024-cycle, and 2048-piece conventional moduli on a 

Virtex-7 FPGA. Our quickest multiplier has been utilized 

in the execution of SIDH and SIKE cycle 3. Utilizing six 

cases of this multiplier, SIDH finishes after 7.33, 8.93, 

13.39, and 18.67 milliseconds and the exemplification and 

the decapsulation of SIKE is acted in 7.13, 8.68, 13.08, and 

18.16 milliseconds over p 434 , p 503 , p 610 , p 751 , 

separately, which yields a least improvement component of 

1.23. 

B. Zhang et al.,[5] The proposed in this is a versatile 

high-radix (i.e., 2m ) Montgomery Modular (MM) 

Duplication circuit supplanting the whole number increases 

in every cycle of the Montgomery MM calculation 

(connected with the result of m pieces of the multiplier and 

the multiplicand) with convey save compressions and 

totally taking out expensive increases. Besides, the 

proposed Montgomery MM disintegrates the actual 

multiplicand utilizing a radix of 2w with w≥2m , 

consequently accomplishing a versatile plan, which can 

convey an issue dormancy of one cycle and a cycle (count) 

idleness of O(N2/(wmp)) where p signifies the quantity of 

accessible handling components, every one of which is 

intended to finish the above emphasis by registering to a 

limited extent the result of w pieces of the multiplicand and 

m pieces of the multiplier. The region intricacy of the 

proposed Montgomery MM is O(wmp) , and consequently, 

the Region Inactivity Item intricacy is O(N2) . 

J. Ding et al.,[6] In this concise, a non-least certain 

structure (NLP) based modular duplication technique that 

joins Karatsuba and textbook augmentation is applied in 

Montgomery modular increase, which saves 2 base 

increases contrasted with Karatsuba-just plans and permits 

pipeline construction to utilize the parallelism in enormous 

modular augmentations. In view of this strategy, 256-cycle 

and 512-bit modular multipliers are built with 3-way and 4-

way NLP multipliers on FPGA stage. Carried out on 

Virtex-6, the 256-cycle configuration can play out a 

modular duplication in 62.6 ns and just requires 3.5K LUTs 

and 24 DSPs, which displays low-dormancy and minimal 

expense among past works. 

G. Gallin et al.,[7] In this paper, we present modular 

multipliers for equipment executions of (hyper)- elliptic 

bend cryptography on FPGAs. The great modulus P is 

nonexclusive and can be designed at run-time to give 

adaptable circuits. A finely-pipelined engineering is 

proposed for covering the fractional items and decreases 

steps ready to go of designed DSP cuts. For example, 2, 3, 

or 4 free duplications can share the equipment assets 

simultaneously to cover inward latencies.  
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We planned a device, dispersed as open source, for 

producing VHDL codes with different boundaries: width of 

operands, number of consistent multipliers per actual one, 

speed or region enhancement, conceivable utilization of 

BRAMs, target FPGA. Our modular multipliers lead to, at 

any rate, 2 times quicker as well as 2 times less circuits 

than cutting edge administrators. 

Z. Gu et al.,[8] Toom-Cook duplication is a 

hypothetically more productive duplication calculation than 

customarily utilized Karatsuba and textbook increase yet is 

seldom utilized in functional equipment plans because of 

its intrinsic careful divisions, which are time-consuming 

and challenging for equal and sequential speed increase. 

This brief proposes a technique for sans division Toom-

Cook duplication based Montgomery modular increase, 

which makes it feasible for Toom-Cook augmentation to be 

applied in viable and productive equipment executions. We 

likewise give an equipment execution of modular 

multipliers of 256 pieces and 1024 pieces with benefits on 

region time-item over past explores. 

S. S. Erdem et al.,[9] The Montgomery calculation is a 

quick modular duplication strategy oftentimes utilized in 

cryptographic applications. This paper explores the digit-

sequential executions of the Montgomery calculation for 

enormous whole numbers. An itemized investigation is 

given and a tight upper headed is introduced for the middle 

outcomes got during the digit-sequential calculation. In 

view of this examination, a productive digit-sequential 

Montgomery modular multiplier design utilizing convey 

save adders is proposed and its intricacy is introduced. In 

this engineering, pipelined convey select adders are utilized 

to perform two last undertakings: adding convey save 

vectors addressing the modular item and taking away the 

modulus from this option, on the off chance that further 

decrease is required. 

W. Dai, et al.,[10] The modular augmentation activity is 

the most time-consuming activity for number-hypothetical 

cryptographic calculations including enormous numbers, 

like RSA and Diffie-Hellman. Executions uncover that in 

excess of 75% of the time is spent in the modular 

duplication work inside the RSA for more than 1,024-piece 

moduli. There are quick multiplier designs to limit the 

postponement and increment the throughput utilizing 

parallelism and pipelining. Anyway such plans are 

enormous with regards to region and low in effectiveness. 

In this paper, we coordinate the quick Fourier change 

(FFT) strategy into the McLaughlin's system, and present a 

better FFT-based Montgomery modular augmentation 

(MMM) calculation accomplishing high region time 

proficiency. 

 

D. D. Chen et al.,[11] presents modular augmentation is 

the center activity openly key cryptographic calculations 

like RSA and the Diffie-Hellman calculation. The 

productivity of the modular multiplier assumes a urgent 

part in the exhibition of these cryptographic techniques. In 

this paper, enhancements to FFT-based Montgomery 

Modular Duplication (FFTM3) utilizing convey save 

number juggling and pre-calculation strategies are 

introduced. Besides, pseudo-Fermat number change is 

utilized to enhance the upheld operand sizes for the FFTM 

3 . The asymptotic intricacy of our strategy is O(l log l log 

l), which is equivalent to the Schonhage-Strassen increase 

calculation (SSA).  

III. MODULAR ARITHMETIC 

As a quick review, rmodn is equal to the remainder 

when we divide r by n. Addition, subtraction, and 

multiplication in modular arithmetic obey two basic rules. 

1. If a + b = c, then (a + b)modn is congruent to cmodn. 

2. If amodn is congruent to dmodn and bmodn is 

congruent to emodn, then (a + b)modn is congruent 

to dmodn + emodn. 

In each of these rules, the plus sign can be replaced by a 

subtraction or multiplication sign. These rules state that we 

can first perform the operation and then find that number 

modn, or we can find each of the numbers modn and then 

perform the operation on them. It's important to note that 

when dealing with subtraction, you may get negative 

numbers. When this happens, you add multiples of the 

modulus n until you get a number between 0 and n - 1. 

Modular multiplication is pretty straightforward. It 

works just like modular addition. You just multiply the two 

numbers and then calculate the standard name. For 

example, say the modulus is 7. 

Example 1:  

Find the remainder of 15 x 17 x 19 when divided by 7.  

Solution:  

On dividing 15 by 7 we get 1 as remainder.  

On dividing 17 by 7 we get 3 as remainder.  

On dividing 19 by 7 we get 5 as remainder.  

Remainder of the expression (15 x 17 x 19)/7 will be 

equal to (1 x 3 x 5)/7.  

Combined remainder will be equal to remainder of 15/7 

i.e. 1. 

Application- 

 Modular arithmetic has many applications in 

cryptography and computer science.  

 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 12, Issue 01, January 2023) 

42 

 It's often used to detect errors in identification 

numbers.  

 Think about the kinds of identification numbers we 

use every day. Credit cards, bank accounts, and 

product barcodes all involve long strings of numbers. 

 Modular arithmetic is used extensively in pure 

mathematics, where it is a cornerstone of number 

theory.  

IV. CONCLUSION 

Modular multiplication of long integers is an important 

building block for cryptographic algorithms or the other 

hand Montgomery Algorithm for modular multiplication 

with a large modulus has been widely used in public key 

cryptosystems for secured data communication. MMM is 

turned out to be proficient on account of region just as 

timing limitations. In any case, one more task of 

multiplication and modular activity must be finished. In 

future we design of MMM using the Xilinx software for 

FPGA-DSP applications. 
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