

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 10, October 2022)

29

An Analysis of Web Services Security Issues, Solutions, and

Restrictions
Sanidayal Gupta

1
, Prof. Vishal Paranjape

2

Department of Computer Science & Engineering Global Nature Care Sangathan's Group of Institutions, India

Abstract-- One message at a time, the WS-Security standard

describes the fundamental SOAP traffic-securing techniques.

However, using WS-Security separately for each message in a

normal web service is fairly wasteful; in addition, it is frequently

crucial to guarantee the integrity of the entire session in addition

to each message. More SOAP-level techniques are available for

this purpose in recent standards.

I. INTRODUCTION

Among the most significant technology advancements

from the previous decade are frequently regarded as Web

Services and Service-Oriented Architectures (SOAs).

However, these new methods' benefits do help to

counteract certain very major drawbacks that these new

technologies have. The most important problems include

Web services security[19]. A secure system should

typically have integrity, confidentiality, and availability.

An attack is any action intended to compromise one of

these characteristics, and vulnerability is the term for that

action. A collection of security issues within the Web

Services domain are presented in this article. The list is not

intended to be exhaustive; rather, it is only a collection of

the most noteworthy attacks that we have looked at in our

research. The majority of the attacks fall within the Denial-

of-Service (DoS) attack category[22] because the

availability of services was the focus of this research.

Daily news reports can be used to gauge the frequency

of DoS assaults. For example, in April and May 2007,

DDoS attacks on official and commercial websites in

Estonia were reported[25]. These assaults were carried out

by botnets utilising methods for flooding the network layer.

In this post, we'll demonstrate how much less resource

effort is required to conduct DoS attacks against web

services than against non-web-service systems.

There are many different facets to the attacks. We'll start

by discussing attacks on individual Web Services that lack

security precautions, then go on to attacks on WS-Security-

enabled Web Services, and ultimately, attacks on Web

Services that are employed in compositions of Web

Services. Although the latter covers all varieties of Web

Service compositions, we have chosen WS-BPEL (often

known as BPEL for short) to illustrate an attack since it

seems to be taking the lead in Web Service composition

standards.

The remainder of this article is structured as follows.

The essential terms and concepts of safety are explained in

the part that follows, along with Web services and BPEL.

Web Ser attack flaws and vulnerabilities are listed in

Section 3. Part Section 4 Following the discussion of

general countermeasure principles, Section 5 provides the

classification structure for attacks. Finally, we wrap up in

Section 6 on the research given in this survey report.

II. FUNDAMENTALS

WS-Security 2.1

WS-Security [21] is the most significant specification

addressing the security requirements of Web Services. It

works in conjunction with the SOAP requirements to

provide Web Services with integrity, confidentiality, and

authentication. WS-

The so-called security header, which carries the WS-

Security extensions, is defined in Security as a SOAP

header block. Additionally, it specifies how SOAP

communications should be encrypted using current XML

security standards like XML Encryption [13] and XML

Signature [2].

With XML Signature, XML fragments can be digitally

signed to prove their authenticity or to guarantee their

integrity. A Signature element is created, which is once

more appended to the security header, and contains the

output of the signature procedure, or the encrypted digest.

XML Encryption enables the encryption of XML

fragments to guarantee data confidentiality. An Encrypted

Data element that has the ciphertext of the encrypted

fragment as its content is substituted for the encrypted

fragment.

Additionally, an EncryptedKey element is defined by

XML Encryption for the purpose of transporting keys. The

usual use of an encrypted key is a hybrid encryption, in

which an XML fragment is encrypted using a symmetric

key that was created at random and then encrypted using the

recipient of the message's public key. In SOAP messages,

the security header must contain the EncryptedKey element,

if it is present. In addition to encryption and signatures, WS-

Security also specifies security tokens like the

UsernameToken or X.509 certificates that can be used to

transfer digital identities.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 10, October 2022)

30

The high degree of flexibility of the mechanisms utilised

in WS-Security is a significant feature. They are applied to

any part of the SOAP message at random, leaving the rest

untouched. As a result, Web server clients and servers must

agree on a security policy that specifies the WS-Security

components that will be used.

Such security policies can be declared using an XML

syntax provided by WS-SecurityPolicy [17]. A server may

declare its security requirements in a WS-Security-Policy

document as an addition to the Web Service definition. The

SOAP message components that must be encrypted or

signed, the algorithms to apply, and the necessary security

tokens can all be specified using the WS- SecurityPolicy.

Engine BPEL These jobs can be divided into three

categories: communication tasks that represent incoming or

outgoing Web Service calls, structural tasks that describe

the execution sequence, and other fundamental duties like

process variable access, workflow execution time

restrictions, or fault management. Each deployed BPEL

process may have several process instances—concurrent

execution contexts of the same process—at any given time.

The ability to employ asynchronous communication is a

crucial component of BPEL-based Web service

composition. In a typical Web Service call, a request

message is followed immediately by a reply message. Until

the reply message is received, the requester must maintain

the connection to the server. BPEL provides asynchronous

behaviour, allowing the requester to disconnect after

sending its request, by using a particular language construct.

In this scenario, the Web Service server creates a new

connection and requests a Web Service on behalf of the

original requester to provide the reply message. Long-

running processes that cannot be finished within the timeout

parameters of a single Web Service call benefit from this

communication style.

The WS-Addressing [11] specification is used to specify

the callback destination and enables the requester to include

an abstract endpoint reference in the request message. This

reference contains all the information required for the BPEL

engine to invoke the Web Service on behalf of the requester.

Message correlation is an additional task that a BPEL

engine must complete. It becomes necessary to use

designated message data fields to identify the target process

instance for an incoming Web Service message because a

BPEL engine may run multiple instances of one BPEL

process concurrently. In the context of BPEL, these are

referred to as correlation sets.

III. ATTACKS

In this section we present a list of attacks on Web

Ser- vices. For each attack an abstract attack

methodology and impact is given, demonstrated by a

concrete attack execution where appropriate.

Additionally, countermeasures against the particular

attacks are discussed.

3.1 Oversize Payload

One important category of Denial-of-Service attacks

is called Resource Exhaustion [24]. Such attacks target

at eliminating a service’s availability by exhausting the

re- sources of the service’s host system, like memory,

processing resources or network bandwidth. One

―classic‖ way to perform such a Resource Exhaustion

attack is to query a service using a very large request

message. This is called an Oversize Payload attack [19].

Against Web Services, an Oversize Payload attack is

quite easy to perform, due to the high memory

consumption of XML processing. The total memory

usage caused by processing one SOAP message is much

higher than just the message size. This is due to the fact

that most Web Service frameworks implement a tree-

based XML processing model like the Document Order

Model (DOM [12]). Using this model, an XML document

like a SOAP message is completely read, parsed and

transformed in- to an in-memory object representation,

which occupies much more memory space than the

original XML document. For common Web Service

frameworks, we observed a raise in memory consumption

of factor 2 to 30.

Example: An Axis Web Service was attacked using a

large SOAP message document, which consisted of a

long list of elements considered as parameter values of the

Web Service operation1:

<Envelope>

<Body>

<getArrayLength>

<item>x</item>

<item>x</item>

<item>x</item>

...

</getArrayLength>

</Body>

</Envelope>

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 10, October 2022)

31

The SOAP message had a total size of approx. 1.8 MB.

The message processing induced a full CPU load for

more than one minute and an additional memory usage of

more than 50 MB. Enlarging the message to approx. 1.9

MB even resulted in an out-of-memory exception.

An obvious countermeasure against Oversize Payload

attacks consists in restriction of the total buffer size (in

bytes) for incoming SOAP messages. In this case, it is

sufficient to check the actual message size and reject any

message exceeding the predefined limit. This method

is used by the .NET 2.0 frameworks, which discards

all SOAP messages larger than 4 MB (in the default

configuration). While this countermeasure is very simple

to implement, it is not suitable for Web Service messages.

A more appropriate approach uses restrictions on the

XML info set. This can be realized by modifying the

XML schema inside the Web Service description and

validating incoming SOAP message to this schema [7].

Details of this approach can be found in section 4.

3.2 Coercive Parsing

One of the first steps in processing a Web Service

request is parsing the SOAP message and transforming

the content to make it accessible for the application

behind the Web Service. Especially when using

namespaces, XML can become verbose and complex in

parsing, compared to other message encodings. Thus,

the XML parsing process allows other possibilities for a

special kind of Denial-of- Service attacks, which is

called Coercive Parsing attacks [19].

Example: The following attack was performed tar-

geting an Axis2 Web Service. The attack used a conti-

nuous sequence of opening tags:

<x>

<x>

<x>

...

The attack resulted in a CPU usage of 100% on the

target system. The service’s availability was massively

reduced, and the incoming message was finally received

with a constant rate of 150 byte/s. Thus, the attack would

per- form well even if the attacker has a very low

bandwidth connection. The Web Service server did not

abort the connection, thus this attack could apparently be

continued infinitely. In our experiment, we stopped the

attack after one hour.

Typical Coercive Parsing attacks targeting at resource

exhaustion use a large number of namespace declara-

tions, oversized prefix names or namespace URIs or very

deeply nested XML structures.

These types of attacks require different

countermeasures.

An attack that is based on complex or deeply nested

XML documents (like the one in the example above)

can be fended by using schema validation (compare

section 4).

Attacks misusing namespace declarations are harder to

prevent. As the XML specification does neither limit the

number of namespace declarations per XML element nor

the length of the namespace URIs, any restriction on the

number or length of namespace declarations would be

arbitrary and could lead to unpredictable rejection of

messages.

3.3 SOAP Action Spoofing

The actual Web Service operation addressed by a

SOAP request is identified by the first child element of

the SOAP body element. Additionally, the optional HTTP

header field ―SOAPAction‖ can be used for operation

identification. Although this value only represents a hint

to the actual operation, the SOAPAction field value is of-

ten used as the only qualifier for the requested operation.

This is based on the bogus optimization that evaluating

the HTTP header does not require any XML processing.

This twofold operation identification enables two

classes of attacks. The first one is executed by a man-

in-the- middle attacker and tries to invoke an operation

different from the one specified inside the SOAP body. It

is based on modification of the HTTP header.

Example: The following attack was performed targeting a

.NET Web Service. The deployed service provi- ded two

operations: op1(string s) and op2(int x)— with the

respective SOAP Action and message element also

named opn. The following message (including the HTTP

header) was sent to the service:

POST /Service.asmx HTTP/1.1

...

SOAPAction: "op2"

<Envelope>

<Body>

<op1>

<s>Hello</s>

</op1>

</Body>

</Envelope>

The method call that was triggered by this message

was: op2(0). This shows that the operation is selected

solely by the SOAP Action value from the HTTP header.

Even worse, the ―wrong‖ operation was executed despite

of incompatible parameter names and types.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 10, October 2022)

32

The example shows how modifications of the HTTP

header can invoke methods that were not intended by

the SOAP message creator. As the HTTP header is not

secured by WS-Security and is newly created at every

SOAP intermediary, it can easily be modified.

The second class of SOAP Action spoofing attacks is

executed by the Web Service client and tries to bypass

an HTTP gateway.

Example: The following attack was performed tar- geting

an Axis2 Web Service. The deployed service pro- vided

two operations: hidden and visible—with the respective

SOAP Action and message element equally na- med. The

following message (including the HTTP header) was sent

to the service:

POST /axis2/testService HTTP/1.1

...

SOAPAction: "visible"

<Envelope>

<Body>

<hidden />

</Body>

</Envelope>

The Axis2 server actually ignored the SOAP Action

value and invoked the hidden operation instead. If an

HTTP border gateway—which of course operates on the

HTTP header only—is configured to reject hidden and

accept visible accesses, this attack allows calling hidden

anyway.

A countermeasure to SOAP Action Spoofing attacks

would be to determine the operation by the SOAP

bod y content. Additionally, the operations determined by

the HTTP header and by the SOAP body must be

compa red and any difference should be regarded as threat

and result in rejecting the Web Service request.

3.4 XML Injection

An XML Injection attack tries to modify the XML

structure of a SOAP message (or any other XML

document) by inserting content—e.g. operation

parameters containing XML tags. Such attacks are

possible if the special characters ‖<‖ and ‖>‖ are not

escaped appropriately. At the Web Service server side,

this content is regarded as part of the SOAP message

structure and can lead to undesired effects.

Example: The following attack was executed against a

.NET Web Service. The deployed service method has two

parameters a and b, both of type xsd:int. This service

was invoked using the following SOAP message:

<Envelope>

<Body>

<HelloWorld>

<a> 1

 2

</HelloWorld>

</Body>

</Envelope>

Such a message could result from an XML Injection

attack: 1 was inserted as parameter content

without escaping ‖<‖ and ‖>‖. As the SOAP message

obviously violates the Web Service schema, it should be

rejected. But in fact, not only that the message was

accepted by .NET, the resulting parameter values inside

the service application for this request were: a = 1, b =0.

Thus, the attacker was able to modify the value of b just

by modifying the content of a. It is easy to imagine a

scenario in which this can lead to unintended service

behaviour, e.g. access to restricted data.

An important step in detecting such attacks is a strict

schema validation on the SOAP message, including data

type validation as possible (see section 4). This would

have rejected the message from the example attack.

IV. GENERAL COUNTERMEASURE APPROACHES

Attacks on Web Services—as on any other system rely

on a large number of different vulnerabilities. Therefore,

countermeasures against attacks are also very wide

ranging. Nevertheless, there exist several general defense

mechanisms.

4.1 Schema Validation

Schema validation can be used against attacks, which

use messages that are not conform to the Web Service

description. Such attacks are called deviation from

protocol message syntax [18]. By validating incoming

messages to the XML schema generated from the WSDL,

the attack can be detected—like shown in section 3.2 and

3.4. Nevertheless, in current Web Service frameworks

schema validation is not used or not activated by default.

This is mainly due to performance reasons, as

schema validation is expensive regarding CPU load

and memory consumption.

Schema validation is also effective against some other

attacks on Web Service applications, like SQL Injection

or Parameter Tampering [19], which also use non-valid

messages3.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 10, October 2022)

33

Additionally, schema validation can be used as a

foundation for other countermeasures. One important

exam- ple is restricting the XML info set to limit the

memory needed for processing the message like

discussed in section 3.1. This is what we call Schema

Hardening.

4.2 Schema Hardening

The general idea is to analyze a schema e.g. from a

Web Service description for constructs allowing

unbounded large or complex XML trees. These constructs

are modified to fulfill finite boundaries.

For example, if the Web Service description defines an

unbounded list of elements4 , the list is con verted into a

list with limited number of elements. Inside the XML

schema, the entry <element

maxOccurs=‖unbounded‖> is replaced by <element

maxOccurs=‖n‖>, where n is a finite number. For most

services such a limit is easy to define. An advantage of

this restriction—compared to a limit of the network

buffer size—is that this limit can be included in the

service’s ―official‖ Web Service descrip- tion and thus

becomes visible to clients in advance.

A second application of schema hardening could be

removal of non-public operations from the schema

inside the Web Service description (see section 3.5).

There are a number of further possibilities for har-

dening the Web Service description—and thus the XML

schema generated. Details can be found in [7]. The sa- me

article also discusses problems raised by processing

schemas containing large ―maxOccurs‖ values.

4.3 Strict WS-Security Policy Enforcement

A WS-Security Policy policy defines a minimum set

of security tokens that have to be included within a

SOAP message to fulfill the policy. The specification

does not provide a possibility for declaring their

maximum usage. So as discussed before an attacker

may add an unbounded number of additional tokens,

engaging the targeted system in costly cryptographic

computations and forcing high memor y consumption.

To avoid this, a good strategy is to consider the

requirements from the WS-Security Policy document not

only as a minimum requirement, but also as a maximum

requirement. This means, a SOAP message must contain

exactly the security tokens specified by the security policy

not less, not more.

As pointed out in [6], this limitation does not restrict

the functionality, but enables the detection of attacks

using oversized cryptography and can help to mitigate

their effects.

V. CLASSIFICATIONS

In an effort to categorize and systemize these

numerous attacks, we took a closer look at their

specific impacts. Table 1 shows a classification of the

attacks described here, based on the following parameters.

Category: Describes the security property that is viola-

ted by the attack. Possible values are confidentiality (C),

data integrity (I), avaliability/Denial-of-Service (A) or

access control issues (AC).

Level: This value indicates whether the attack resides on

messaging layer (M) or on process layer (P) as defined in

[27].

Spreading: Attacks can be application specific (A),

targeting a specific Web Service framework only, or

they can be due to a conceptional (C) flaw of the under-

lying protocol specifications.

Size: Some attacks target single Web Services, others

involve several communication partners. The Size va-

lue gives the usual or minimal number of involved

systems—apart from the attacker.

Deviation: Describes whether the attack generally uses

syntactical (S), sequential (O), or semantical/appli- cation

specific (A) protocol deviation techniques. A [•]

indicates potential, but not necessary deviation.

Dependencies: This parameter indicates how far an

attack relies on prerequisites at the targeted Web Ser-

vice server, e.g. the existence of a specific operation or a

necessary flaw in the Web Service description.

Fendability: A measure on how effective potential

countermeasures can be in terms of mitigating (m) or

even completely fending (f) the particular attacks. The

intended countermeasure concepts are given as well.

Note that the general countermeasure of performing

access control is applicable to any of the attacks

presented here, but it only mitigates the attack, and does

not completely annihilate the possibility for an attack.

Amplification: This factor as defined in [16] is only

applicable for flooding attacks and describes the rela- tion

of attack performance workload to attack impact

workload.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 10, October 2022)

34

TABLE 1

Attack Classification

VI. CONCLUSIONS

Like every upcoming technology, Web Services are

challenged by several security issues. The attacks

presented in this article illustrate how easily an

insufficiently secured Web Service server can be affected

with a single or few messages. While some of the

vulnerabilities are caused by implementation

weaknesses, most of them exploit fundamental protocol

flaws, abusing the given flexibility within WS-related

standards.

Thus, in order to cope with these threats, Web Ser- vice

developers and adopters must be aware of the

vulnerabilities and their potential impact. Further,

researchers need to examine the existing Web Service

standards for further vulnerabilities in order to develop

more accurate countermeasures. Only improvement of

attack mitigation techniques along with integration into

every Web- Service-driven system will face up with these

challenges and help to make Web Services as secure as

possible.

REFERENCES

[1] Andrews T, Curbera F, Dholakia H, Goland Y, Klein J, Leymann
F, Liu K, Roller D, Smith D, Thatte S, Tricko-vic I, Weerawarana

S (2003) Business Process Execution Language for Web Services

Version 1.1. Oasis Standard

[2] Bartel M, Boyer J, Fox B, LaMacchia B, Simon E (2002) XML-

Signature Syntax and Processing. W3C Recom-mendation

[3] Bhargavan K, Fournet C, Gordon AD, O’Shea G (2005) An

advisor for Web Services security policies. In: SWS’05:

Proceedings of the 2005 workshop on Secure web services, ACM
Press, New York, NY, USA, pp 1–9

[4] Fernando R (2006) Secure web services with apache ram-part. Tech.
rep., WSO2 Oxygen Tank

[5] Gruschka N (2008) Schutz von Web Services durch erwei terte und

effiziente Nachrichtenvalidierung. PhD thesis, Christian-Albrechts-
University of Kiel, Germany

[6] Gruschka N, Herkenh¨oner R (2006) WS-SecurityPolicy Decision
and Enforcement for Web Service Firewalls. In: Proceedings of the

IEEE/IST Workshop on Monitoring, Attack Detection and

Mitigation

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 11, Issue 10, October 2022)

35

[7] Gruschka N, Luttenberger N (2006) Protecting Web Ser- vices from

DoS Attacks by SOAP Message Validation. In: Proceedings of the

IFIP TC-11 21. International In- formation Security Conference
(SEC 2006)

[8] Gruschka N, Luttenberger N, Herkenh¨oner R (2006) Event-based

SOAP message validation for WS- SecurityPolicy-
Enriched web services. In: Proceedings of the 2006 International

Conference on Semantic Web & Web Services

[9] Gruschka N, Herkenh¨oner R, Luttenberger N (2007) Ac- cess

Control Enforcement for Web Services by Event- Based

Security Token Processing. In: Braun T, Carle G, Stiller B (eds) 15.
ITG/Gi Fachtagung Kommunikation in Verteilten Systemen (KiVS

2007), pp 371–382

[10] Gruschka N, Jensen M, Luttenberger N (2007) A Stateful Web

Service Firewall for BPEL. Proceedings of the IEEE International

Conference on Web Services (ICWS 2007)

[11] Gudgin M, Hadley M, Rogers T (2006) Web Services Ad- dressing

1.0 - SOAP Binding. W3C Recommendation

[12] Hors AL, Hegaret PL, Wood L, Nicol G, Robie J, Cham- pion M,

Byrne S (2004) Document Object Model (DOM) Level 3 Core

Specification. W3C Recommendation

[13] Imamura T, Dillaway B, Simon E (2002) XML Encryp- tion Syntax

and Processing. W3C Recommendation

[14] Jayasinghe D (2006) SOA development with Axis2: Un- derstanding

Axis2 basis. IBM developerWorks

[15] Jensen M (2008) BPEL Firewall Abwehr von Angriffen auf

zustandsbehaftete Web Services (german). VDM Verlag Dr.

Mu l̈ler, ISBN 9783836485517

[16] Jensen M, Gruschka N, Luttenberger N (2008) The Impact of

Flooding Attacks on Network-based Services. In: Proceedings of

the IEEE International Conference on Availability, Reliability and
Security

[17] Kaler C, Nadalin (editors) A (2005) Web Services Security Policy

Language (WS-SecurityPolicy) 1.1

[18] Leiwo J, Nikander P, Aura T (2000) Towards network denial of
service resistant protocols. In: Proc. of the 15th International

Information Security Conference (IFIP/SEC)

[19] Lindstrom P (2004) Attacking and Defending Web Service. A Spire

Research Report

[20] McIntosh M, Austel P (2005) XML signature element

wrapping attacks and countermeasures. In: SWS ’05:

Proceedings of the 2005 workshop on Secure web services, ACM

Press, New York, NY, USA, pp 20–27

[21] Nadalin A, Kaler C, Monzillo R, Hallam-Baker P (2006) Web

Services Security: SOAP Message Security 1.1 (WS- Security 2004)

[22] Needham RM (1994) Denial of service: an example. Commun ACM

37(11):42–46

[23] Noga ML, Schott S, L¨owe W (2002) Lazy XML proces- sing.

In: DocEng ’02: Proceedings of the 2002 ACM symposium on

document engineering, ACM Press, New York,NY, USA, pp 88–94

[24] Sch¨afer G (2005) Sabotageangriffe auf Kommunika-

tionsstrukturen: Angriffstechniken und Abwehrmanah men. PIK
28 pp 130–139

[25] Smith A (2007) Estonia: Under siege on the web. Time Magazine

URL
http://www.time.com/time/magazine/article/0,9171,1626744,00.htm

l

[26] The SAX Project (2002) Simple API for XML–SAX 2.0.1 URL

http://www.saxproject.org

[27] Weerawarana S, Curbera F, Leymann F, Storey T, Ferguson DF
(2005) Web Services Platform Architecture: SOAP, WSDL, WS-

Policy, WS- Addressing, WS-BPEL, WS-Reliable Messaging, and

More. Prentice Hall PTR

http://www.saxproject.org/

