

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online), Volume 2, Special Issue 4, June 2014)

International Research Conference on Engineering, Science and Management 2014 (IRCESM 2014)

1

An Intelligent Technique for Image Compression
Athira Mayadevi Somanathan

1
, V. Kalaichelvi

2

1
Dept. Of Electronics and Communications Engineering, BITS Pilani, Dubai, U.A.E.
2
Dept. Of Electronics and Instrumentation Engineering, BITS Pilani, Dubai, U.A.E.

1
athiranath@gmail.com

2
kalaichelvi@dubai.bits-pilani.ac.in

Abstract— Classic image compression techniques such as

JPEG and MPEG have serious limitations at high

compression rates – the decompressed image gets really fuzzy

or indistinguishable. To mitigate this problem Artificial

Neural Network (ANN) techniques, considered to be

intelligent and adaptive models, are used for image

compression. In this paper, image compression is achieved by

implementing an intelligent technique like the

backpropagation neural network algorithm. Analysis is also

done on achieving a good quality compressed image by

varying and comparing the neural network parameters such

as number of hidden layer nodes, momentum constant and

number of epochs.

Keywords— Artificial Neural Networks, Backpropagation

Neural Network, Image Compression

I. INTRODUCTION

Over the last ten years we have been witnessing an

evolution in the way we converse – the perpetually

developing internet, the rapid progress of mobile

communications, and the ever expanding significance of

video communications are all a part and parcel of this

essential transformation. All these features of multimedia

revolution are possible because of data compression. If it

were not for data compression algorithms, it would not

have been possible to put images, audio or video on

websites [1]. Artificial Neural Networks are gaining

immense popularity for their ability to solve complex real-

world problems in image compression. They have

displayed their superiority in tackling noisy or blurred data

[2]. Over the years, these computational models have been

used for various applications, particularly for compression

of data. Their ability to pre-process input sequence to

generate less sophisticated sequences with fewer

components makes them well-suited for this application

[3]. The application of neural network for image

compression with lifting scheme and RLC was explained

by Srikala etal [4]. Matsuoka R et al have analyzed the

quantitative analysis of image quality of lossy compression

images [5]. The objective of the present work includes

implementation of backpropagation neural network for

image compression using MATLAB software.

The quality and compression ratio of an image is

compared by varying network training parameters such as

momentum constant, number of epochs and number of

hidden layer nodes.

II. DATA COMPRESSION

In computer science and information theory, data

compression is essentially encoding of data using lesser

number of bits than the actual representation. . In short, it is

the science of portraying information in a condensed form.

In a compression technique, there are two algorithms

involved – the compression algorithm and the

reconstruction algorithm. The compression algorithm

produces an output with less number of bits to depict the

information as compared to the input. The compressed

information is then reconstructed back to the original

representation by using the reconstruction algorithm. A

new algorithm for data compression is being developed by

I Made Agus and Dwi Suarjaya [6]. The use of data

compression technique for wireless sensor network

technology for environmental monitoring is analyzed by

Capo-chichi et al [7].

III. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are models

influenced by animal Central Nervous System (CNS), and

these networks are capable of machine learning and pattern

recognition. ANNs are normally represented as an

organized web of interconnected neurons that can

determine values from inputs by feeding information

through the network.

Neural network structures are based on the singular hope

that atleast some of the adaptability and power of the

human brain can be replicated by artificial means. These

networks consist of many simple computing elements

connected together by varying strength, a gross abstraction

of the brain, which in reality consists of large numbers of

far more complex neurons connected together with far

more complex and structured couplings [8].

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online), Volume 2, Special Issue 4, June 2014)

International Research Conference on Engineering, Science and Management 2014 (IRCESM 2014)

2

A. Neural Network Structure

Neural Networks are modeled after biological neural

network structures. Figure1 shows a model neuron which is

the starting point for neural networks.

Fig. 1. Neuron Model

The model neuron shown here consists of several inputs

and a single output. The input values are altered by

multiplying with ‗weights‘. These weighted inputs are then

combined and referenced against a threshold value and

activation function, and the output is subsequently

determined.

B. Learning and Training in Artificial Neural Networks

The ability to learn is a fundamental trait of intelligence

[9]. The process of learning in ANN can be thought of as

the problem of amending the network model and the

interconnecting weights, so that it can perform a given task

effectively. The multilayer architecture, though is very

efficient at solving complex problems, also introduces the

problem of training the hidden layers for getting the desired

output which is unknown. The neural network must learn

the weights from the training patterns that are available.

This ability of the ANNs to automatically learn from

examples sets them apart from the traditional systems and

makes them attractive. The weights are iteratively updated

in the network, leading to better performance over time.

There are three main modes of learning [10] - supervised

learning, unsupervised learning and hybrid learning. As the

supervised learning has a network that is provided with a

correct output for every pattern that is given as an input to

the network, this type of leaning is being used in the

present work.

IV. BACKPROPAGATION NEURAL NETWORK ALGORITHM

The backpropagation neural network algorithm, a

method to monitor learning, is a multilayer feedback

network, trained according to error back propagation

algorithm and is the most pervasive and popular neural

network algorithms in use today. Also known as the

‗generalized delta rule‘, it is a supervised learning method.

The back propagation learning algorithm can be detailed

as follows:

1. Forward propagation of operating signal – The input

signal fed into the network is propagated to the

output layer through the hidden layer. During this

propagation, the network weights and offsets are

maintained constant, and based on the current state

of the synaptic weights, the network produces some

output. This output is compared to the expected

good output, and if the two do not match, back

propagation of error signal takes place.

2. Back propagation of error signal and updating of

weights – The mean squared error (MSE) signal is

computed and this value is propagated backwards

from the output layer to the input layer. During this

procedure, small changes are made to the weights

and the weight value of the network is regulated by

the error feedback. This whole cycle is repeated

until the error value falls below a certain threshold

value.

Firstly, initialization of the neural network is done by

fixing all its weights to be small random numbers between

–1 and +1. The output is then calculated according to the

pattern that was provided at the input. This process is

referred to as the ‗forward pass‘. Since initially all the

weights are random, the calculated output would be

different from the target output. Error, which is Target –

Calculated Output is then found for each neuron. This error

value is then used to alter the weights in such a manner as

to make the error smaller in subsequent passes/iterations.

This process where the neuron output gets closer to its

specified target value is known as the ‗reverse pass‘. The

cycle is repeated over and over again until a minimum error

value is obtained.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online), Volume 2, Special Issue 4, June 2014)

International Research Conference on Engineering, Science and Management 2014 (IRCESM 2014)

3

V. IMAGE COMPRESSION USING BACKPROPAGATION

ALGORITHM

In this paper, the backpropagation algorithm is used to

compress data, specifically images. Methods based on

ANN provide means for image compression at the input

side (transmitter), and decompression at the output side

(receiver). ANN techniques are efficient at maintaining

security of the data, in addition to providing adequate data

compression rates.

The neural network structure for image compression is

shown in Figure 2. In order to achieve compression of the

image, the number of hidden layer neurons must be less

than that of the input and output layer neurons.

Fig. 2. Neural Network for Image Compression

The image to be compressed is first passed through the

input layer and then through a hidden layer consisting of

very small number of neurons. This hidden layer stores the

compact features of the image, and hence, the number of

neurons in this layer needs to be smaller in order to achieve

a higher compression ratio. The compressed image is

finally observed after passing through the output layer. This

compressed image retains much of the input data, while

discarding all the redundant information. In the present

work, the network architecture used for image compression

is [256 240 256] where 256 corresponds to the number of

nodes in the input, 240 corresponds to number of nodes in

the hidden layer (which is found to be optimum for

compression in this scenario, as shown by the simulation

results) and 256 corresponds to number of nodes in the

output layer.

VI. SIMULATION RESULTS IN MATLAB

Study of image compression using Back Propagation

Neural Network (BPNN) was done on images and image

compression was subsequently simulated in MATLAB 8.0

[11]. A ‗Lena‘ image of size 65.9KB was used for this

purpose as shown in Figure 3.

Fig. 3. Lena image before compression

The image is saved in the MATLAB directory or

pathway so that it can be invoked in the program. Since the

image is a colored image, it had to be gray scaled so that it

can be given as an input to the neural network. This gray

scaled image is then resized to a pixel size of 256x256, so

that the input and output layers have the same number of

neurons (256 neurons). The feedforward neural network

was then invoked and the training parameters were defined.

The function used for the purpose of network training was

the gradient descent with momentum and adaptive learning

rate backpropagation. After specifying the number of

hidden layer nodes (which must be less than the number of

input layer neurons), the resized and gray scaled ‗Lena‘

image was fed to the neural network. Depending on the

quantity of hidden neurons, the learning rate, the number of

epochs and the momentum constant, various compressed

images were produced, and the compression ratio was

calculated for different cases to find the optimum

parameters. Simulation studies were performed by varying

the network parameters, such as the hidden nodes, number

of epochs or iteration, the momentum constant and the

learning rate.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online), Volume 2, Special Issue 4, June 2014)

International Research Conference on Engineering, Science and Management 2014 (IRCESM 2014)

4

A. Effect of Varying Momentum Constant on Compression

Ratio

In the first set of analysis, the momentum constant was

varied from 0.2 to 0.8, keeping all the other parameters

constant. The number of epochs was fixed at 10,000, the

learning rate was set to 1, and the number of hidden layer

nodes was set to 240 (a value less than the input number of

nodes of 256). Table I summarizes the simulation results as

observed by varying the momentum constant.

TABLE I

SIMULATION RESULTS SHOWING EFFECT OF VARYING MOMENTUM

CONSTANT

Case 1 Case 2 Case 3 Case 4 Case 5

No Of Epochs 10000 10000 10000 10000 10000

Hidden Layer

Nodes
240 240 240 240 240

Learning Rate 1 1 1 1 1

Momentum

Constant
0.2 0.4 0.45 0.6 0.8

Time (min:sec) 01:18 02:50 01:05 00:39 01:05

Size

(KB)

30.8 27.9 31.8 32 29

Compression

Ratio
2.139 2.362 2.072 2.059 2.272

No of

Iterations
164 368 139 80 135

As observed from Table I, a momentum constant of 0.7

resulted in a higher compression ratio. Though this gave an

image that was highly compressed, the quality of the image

was severely degraded, and it also required a higher

simulation time compared to the rest in the analysis set.

From this analysis, it was observed that the compression

ratio improved with the momentum constant only up to a

certain point (upto 0.7), after which the quality of the

image was severely compromised. A good quality image in

this analysis was formed when the momentum constant was

set to 0.45 (Case 3 in Table I). Fig 4 shows the output of

Case 3.

Fig. 4. Compressed image formed with momentum constant set to 0.45

A. Effect of Varying Number of Hidden Nodes on

Compression Ratio

In this set of analysis, the hidden layer nodes were

changed from 50 to 200 in steps of 50, keeping the

momentum constant as 0.45, the learning rate as 1, and the

epoch count as 5000. Finally, the number of nodes in

hidden layer was set to 240. Table II shows the result of

this analysis.

TABLE II

SIMULATION RESULTS SHOWING EFFECT OF VARYING NUMBER OF

HIDDEN LAYER NODES

Case 1 Case 2 Case 3 Case 4 Case 5

No Of Epochs 5000 5000 5000 5000 5000

Hidden Layer

Nodes
50 100 150 200 240

Learning Rate 1 1 1 1 1

Momentum

Constant
0.45 0.45 0.45 0.45 0.45

Time (min:sec) 00:14 00:45 00:49 01:28 00:57

Size (KB) 26.6 27.2 28.7 29.6 31.4

Compression

Ratio
2.477 2.423 2.296 2.226 2.099

No of Iterations 148 261 180 237 124

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online), Volume 2, Special Issue 4, June 2014)

International Research Conference on Engineering, Science and Management 2014 (IRCESM 2014)

5

Table II shows that as the number of hidden layer nodes

increases, the image compression ratio also decreases,

giving rise to less compressed images, i.e., fewer the

number of hidden layer nodes, the higher the compression

ratio. Though the best compression ratio was achieved

when the hidden layer nodes were set to 50, the image

quality was inferior as compared to the output image

formed in Case 5 where the number of hidden layer nodes

is set to 240. Fig 5 shows the output compressed image of

Case 5. The first two analyses show that a momentum

constant of 0.45 and 240 hidden layer nodes gives a

distinguishable and good quality compressed image.

Fig. 5. Compressed image formed with number of hidden layer nodes

set to 240

B. Effect of Varying Number of Epochs on Compression

Ratio

As the previous analyses showed, a value closer to

10,000 for the number of epochs results in a better quality

compressed image. Hence, in this set, the number of epochs

was varied from 11,000 to 14,000 in steps of 1000, and

finally analysis was also done for a value of 20,000. The

learning rate was a constant value of 1 for this entire set.

The momentum constant and the hidden layer nodes were

also set to a fixed value of 0.45 and 240 respectively. Table

III summarizes the results of this analysis.

As clearly observed from Table III, a higher

compression ratio is observed in Case 5 when the number

of epochs is set to 20,000, but a better quality image is

formed in Case 1, when the epoch number is set to 11,000.

Figure 6 shows the output image of Case 1.

TABLE III

SIMULATION RESULTS SHOWING EFFECT OF VARYING NUMBER OF

EPOCHS

Case 1 Case 2 Case 3 Case 4 Case 5

No Of Epochs 11000 12000 13000 14000 20000

Hidden Layer

Nodes
240 240 240 240 240

Learning Rate 1 1 1 1 1

Momentum

Constant
0.45 0.45 0.45 0.45 0.45

Time

(min:sec)
03:59 01:42 01:03 01:17 02:41

Size (KB) 28.6 29.7 31.6 30.2 28.4

Compression

Ratio
2.304 2.219 2.085 2.182 2.320

No of

Iterations
440 222 137 163 343

Fig. 6. Compressed image formed with number of epochs set to 11,000

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347-6435(Online), Volume 2, Special Issue 4, June 2014)

International Research Conference on Engineering, Science and Management 2014 (IRCESM 2014)

6

C. Results and Discussion

Through the different analyses sets that were studied, it

was observed that the quality of the image as well as the

compression ratio depends on its network parameters –

epoch number, momentum constant, hidden layer nodes,

and learning rate. Over the course of this research work, it

was observed that a sufficiently high epoch number, a

higher simulation time, combined with a higher learning

rate, and a sufficient but not too large momentum constant

resulted in a good quality compressed image. Epoch

number closer to 10,000 resulted in better quality images,

and though a value of 20,000 simulated an image that was

highly compressed, the image quality was severely

degraded. The analysis showed that a momentum constant

of 0.45, a learning rate of 1, 240 hidden layer nodes and

11,000 epochs resulted in a highly compressed and good

quality image.

VII. CONCLUSION

In this paper, artificial neural networks were employed

for the particular application of image compression. Images

were given as the input to the network, and various

compressed images were produced, depending on the

variation of neural network parameters. In the future, this

work can be extended to not just images, but also to other

kinds of data, such as texts, for learning about the

efficiency of ANNs in data compression.

Acknowledgment

The authors are grateful to the authorities of BITS Pilani,

Dubai Campus, U.A.E. for the encouragement and support

to carry out the research work.

REFERENCES

[1] Guy E Blelloch, ―Introduction to Data Compression,‖ Computer
Science Department, Carnegie Mellon University, January 31, 2013.

Available: http://www.blellochcs.cmu.edu

[2] A. Khashman, and K. Dimililer, ―Comparison Criteria for Optimum

Image Compression,‖ Computer as a Tool, EUROCON 2005, The
International Conference on IEEE, vol. 2, 2005.

[3] R. D. Dony, and S. Haykin, ―Neural Network Approaches to Image

Compression‖, Proc. IEEE, vol. 83, 1995, pp. 288-303.

[4] Srikala P, and Umar S., ―Neural Network Based Image Compression

with Lifting Scheme and RLC,‖ International Journal of Research in
Engineering and Technology, vol. 1, no. 1, 2012, pp. 13-19

[5] Matsuoka R, Sone M, Fukue K, Cho K, and Shimoda H.,
―Quantitative Analysis of Image Quality of Lossy Compression

Images," International Society for Photogrammetry and Remote

Sensing, 20 September, 2013. Available:
http://www.isprs.org/proceedings/XXXV/congress/comm3/papers/3

48.pdf.

[6] D. Suarjaya, and I. Made Agus, ―A New Algorithm for Data
Compression Optimization,‖ International Journal of Advanced

Computer Science & Applications, vol. 3, no. 8., 2012

[7] Capo-Chichi, Eugène Pamba, Hervé Guyennet, and J. M. Friedt, ―K-

RLE: A New Data Compression Algorithm for Wireless Sensor

Network,‖ Sensor Technologies and Applications,
SENSORCOMM'09, Third International Conference on IEEE, 2009,

pp. 502-507.

[8] B. Kosko, Neural networks and Fuzzy Systems: A Dynamical
Systems Approach to Machine Intelligence, Prentice-Hall, 1992

[9] G. U. Chaudhari, and B. Mohanty, ―Function Approximation Using
Back Propagation Algorithm in Artificial Neural Networks,‖ Ph.D.

dissertation, Dept. Elect. Eng., NIT Rourkela, Odisha, 2007

[10] A. K. Jain, J. Mao, and K. M. Mohiuddin, Artificial Neural
Networks: A tutorial, IEEE Computer, vol. 29, no. 3, 1996, pp. 31-

44.

[11] Athira Mayadevi Somanathan, ―A Neural Network Approach for

Data Compression,‖ Submitted to BITS Pilani, Dubai Campus as

part of the project work, 2013.

http://www.blellochcs.cmu.edu/

