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Abstract— Classic image compression techniques such as 

JPEG and MPEG have serious limitations at high 

compression rates – the decompressed image gets really fuzzy 

or indistinguishable. To mitigate this problem Artificial 

Neural Network (ANN) techniques, considered to be 

intelligent and adaptive models, are used for image 

compression. In this paper, image compression is achieved by 

implementing an intelligent technique like the 

backpropagation neural network algorithm. Analysis is also 

done on achieving a good quality compressed image by 

varying and comparing the neural network parameters such 

as number of hidden layer nodes, momentum constant and 

number of epochs. 
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I. INTRODUCTION 

Over the last ten years we have been witnessing an 

evolution in the way we converse – the perpetually 

developing internet, the rapid progress of mobile 

communications, and the ever expanding significance of 

video communications are all a part and parcel of this 

essential transformation. All these features of multimedia 

revolution are possible because of data compression. If it 

were not for data compression algorithms, it would not 

have been possible to put images, audio or video on 

websites [1]. Artificial Neural Networks are gaining 

immense popularity for their ability to solve complex real-

world problems in image compression. They have 

displayed their superiority in tackling noisy or blurred data 

[2]. Over the years, these computational models have been 

used for various applications, particularly for compression 

of data. Their ability to pre-process input sequence to 

generate less sophisticated sequences with fewer 

components makes them well-suited for this application 

[3]. The application of neural network for image 

compression with lifting scheme and RLC was explained 

by Srikala etal [4]. Matsuoka R et al have analyzed the 

quantitative analysis of image quality of lossy compression 

images [5]. The objective of the present work includes 

implementation of backpropagation neural network for 

image compression using MATLAB software.  

The quality and compression ratio of an image is 

compared by varying network training parameters such as 

momentum constant, number of epochs and number of 

hidden layer nodes. 

II. DATA COMPRESSION 

In computer science and information theory, data 

compression is essentially encoding of data using lesser 

number of bits than the actual representation. . In short, it is 

the science of portraying information in a condensed form. 

In a compression technique, there are two algorithms 

involved – the compression algorithm and the 

reconstruction algorithm. The compression algorithm 

produces an output with less number of bits to depict the 

information as compared to the input. The compressed 

information is then reconstructed back to the original 

representation by using the reconstruction algorithm. A 

new algorithm for data compression is being developed by 

I Made Agus and Dwi Suarjaya [6]. The use of data 

compression technique for wireless sensor network 

technology for environmental monitoring is analyzed by 

Capo-chichi et al [7].  

III. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are models 

influenced by animal Central Nervous System (CNS), and 

these networks are capable of machine learning and pattern 

recognition. ANNs are normally represented as an 

organized web of interconnected neurons that can 

determine values from inputs by feeding information 

through the network. 

Neural network structures are based on the singular hope 

that atleast some of the adaptability and power of the 

human brain can be replicated by artificial means. These 

networks consist of many simple computing elements 

connected together by varying strength, a gross abstraction 

of the brain, which in reality consists of large numbers of 

far more complex neurons connected together with far 

more complex and structured couplings [8]. 
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A. Neural Network Structure 

Neural Networks are modeled after biological neural 

network structures. Figure1 shows a model neuron which is 

the starting point for neural networks. 

 
Fig. 1.  Neuron Model 

The model neuron shown here consists of several inputs 

and a single output. The input values are altered by 

multiplying with ‗weights‘. These weighted inputs are then 

combined and referenced against a threshold value and 

activation function, and the output is subsequently 

determined. 

B. Learning and Training in Artificial Neural Networks 

The ability to learn is a fundamental trait of intelligence 

[9]. The process of learning in ANN can be thought of as 

the problem of amending the network model and the 

interconnecting weights, so that it can perform a given task 

effectively. The multilayer architecture, though is very 

efficient at solving complex problems, also introduces the 

problem of training the hidden layers for getting the desired 

output which is unknown. The neural network must learn 

the weights from the training patterns that are available. 

This ability of the ANNs to automatically learn from 

examples sets them apart from the traditional systems and 

makes them attractive. The weights are iteratively updated 

in the network, leading to better performance over time. 

There are three main modes of learning [10] - supervised 

learning, unsupervised learning and hybrid learning. As the 

supervised learning has a network that is provided with a 

correct output for every pattern that is given as an input to 

the network, this type of leaning is being used in the 

present work.  

 

 

 

IV. BACKPROPAGATION NEURAL NETWORK ALGORITHM 

The backpropagation neural network algorithm, a 

method to monitor learning, is a multilayer feedback 

network, trained according to error back propagation 

algorithm and is the most pervasive and popular neural 

network algorithms in use today.  Also known as the 

‗generalized delta rule‘, it is a supervised learning method.  

The back propagation learning algorithm can be detailed 

as follows: 

1. Forward propagation of operating signal – The input 

signal fed into the network is propagated to the 

output layer through the hidden layer. During this 

propagation, the network weights and offsets are 

maintained constant, and based on the current state 

of the synaptic weights, the network produces some 

output. This output is compared to the expected 

good output, and if the two do not match, back 

propagation of error signal takes place. 

2. Back propagation of error signal and updating of 

weights – The mean squared error (MSE) signal is 

computed and this value is propagated backwards 

from the output layer to the input layer. During this 

procedure, small changes are made to the weights 

and the weight value of the network is regulated by 

the error feedback. This whole cycle is repeated 

until the error value falls below a certain threshold 

value. 

Firstly, initialization of the neural network is done by 

fixing all its weights to be small random numbers between 

–1 and +1. The output is then calculated according to the 

pattern that was provided at the input. This process is 

referred to as the ‗forward pass‘. Since initially all the 

weights are random, the calculated output would be 

different from the target output. Error, which is Target – 

Calculated Output is then found for each neuron. This error 

value is then used to alter the weights in such a manner as 

to make the error smaller in subsequent passes/iterations. 

This process where the neuron output gets closer to its 

specified target value is known as the ‗reverse pass‘. The 

cycle is repeated over and over again until a minimum error 

value is obtained.  

 

 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347-6435(Online), Volume 2, Special Issue 4, June 2014) 

International Research Conference on Engineering, Science and Management 2014 (IRCESM 2014) 

3 

 

V. IMAGE COMPRESSION USING BACKPROPAGATION 

ALGORITHM 

In this paper, the backpropagation algorithm is used to 

compress data, specifically images. Methods based on 

ANN provide means for image compression at the input 

side (transmitter), and decompression at the output side 

(receiver). ANN techniques are efficient at maintaining 

security of the data, in addition to providing adequate data 

compression rates.  

The neural network structure for image compression is 

shown in Figure 2. In order to achieve compression of the 

image, the number of hidden layer neurons must be less 

than that of the input and output layer neurons. 

 

Fig. 2.  Neural Network for Image Compression 

The image to be compressed is first passed through the 

input layer and then through a hidden layer consisting of 

very small number of neurons. This hidden layer stores the 

compact features of the image, and hence, the number of 

neurons in this layer needs to be smaller in order to achieve 

a higher compression ratio. The compressed image is 

finally observed after passing through the output layer. This 

compressed image retains much of the input data, while 

discarding all the redundant information. In the present 

work, the network architecture used for image compression 

is [256 240 256] where 256 corresponds to the number of 

nodes in the input, 240 corresponds to number of nodes in 

the hidden layer (which is found to be optimum for 

compression in this scenario, as shown by the simulation 

results) and 256 corresponds to number of nodes in the 

output layer.  

 

VI. SIMULATION RESULTS IN MATLAB 

Study of image compression using Back Propagation 

Neural Network (BPNN) was done on images and image 

compression was subsequently simulated in MATLAB 8.0 

[11]. A ‗Lena‘ image of size 65.9KB was used for this 

purpose as shown in Figure 3. 

 
Fig. 3.  Lena image before compression 

The image is saved in the MATLAB directory or 

pathway so that it can be invoked in the program. Since the 

image is a colored image, it had to be gray scaled so that it 

can be given as an input to the neural network. This gray 

scaled image is then resized to a pixel size of 256x256, so 

that the input and output layers have the same number of 

neurons (256 neurons). The feedforward neural network 

was then invoked and the training parameters were defined. 

The function used for the purpose of network training was 

the gradient descent with momentum and adaptive learning 

rate backpropagation. After specifying the number of 

hidden layer nodes (which must be less than the number of 

input layer neurons), the resized and gray scaled ‗Lena‘ 

image was fed to the neural network. Depending on the 

quantity of hidden neurons, the learning rate, the number of 

epochs and the momentum constant, various compressed 

images were produced, and the compression ratio was 

calculated for different cases to find the optimum 

parameters. Simulation studies were performed by varying 

the network parameters, such as the hidden nodes, number 

of epochs or iteration, the momentum constant and the 

learning rate.  
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A. Effect of Varying Momentum Constant on Compression 

Ratio 

In the first set of analysis, the momentum constant was 

varied from 0.2 to 0.8, keeping all the other parameters 

constant. The number of epochs was fixed at 10,000, the 

learning rate was set to 1, and the number of hidden layer 

nodes was set to 240 (a value less than the input number of 

nodes of 256). Table I summarizes the simulation results as 

observed by varying the momentum constant. 

TABLE I 

SIMULATION RESULTS SHOWING EFFECT OF VARYING MOMENTUM 

CONSTANT 

 
Case 1 Case 2 Case 3 Case 4 Case 5 

No Of Epochs 10000 10000 10000 10000 10000 

Hidden Layer 

Nodes 
240 240 240 240 240 

Learning Rate 1 1 1 1 1 

Momentum 

Constant 
0.2 0.4 0.45 0.6 0.8 

Time (min:sec) 01:18 02:50 01:05 00:39 01:05 

Size 

(KB) 

30.8 27.9 31.8 32 29 

Compression 

Ratio 
2.139 2.362 2.072 2.059 2.272 

No of 

Iterations 
164 368 139 80 135 

 

As observed from Table I, a momentum constant of 0.7 

resulted in a higher compression ratio. Though this gave an 

image that was highly compressed, the quality of the image 

was severely degraded, and it also required a higher 

simulation time compared to the rest in the analysis set. 

From this analysis, it was observed that the compression 

ratio improved with the momentum constant only up to a 

certain point (upto 0.7), after which the quality of the 

image was severely compromised. A good quality image in 

this analysis was formed when the momentum constant was 

set to 0.45 (Case 3 in Table I). Fig 4 shows the output of 

Case 3.  

 

 
Fig. 4. Compressed image formed with momentum constant set to 0.45 

A. Effect of Varying Number of Hidden Nodes on 

Compression Ratio 

In this set of analysis, the hidden layer nodes were 

changed from 50 to 200 in steps of 50, keeping the 

momentum constant as 0.45, the learning rate as 1, and the 

epoch count as 5000. Finally, the number of nodes in 

hidden layer was set to 240. Table II shows the result of 

this analysis. 

TABLE II  

SIMULATION RESULTS SHOWING EFFECT OF VARYING NUMBER OF 

HIDDEN LAYER NODES 

 

Case 1 Case 2 Case 3 Case 4 Case 5 

No Of Epochs 5000 5000 5000 5000 5000 

Hidden Layer 

Nodes 
50 100 150 200 240 

Learning Rate 1 1 1 1 1 

Momentum 

Constant 
0.45 0.45 0.45 0.45 0.45 

Time (min:sec) 00:14 00:45 00:49 01:28 00:57 

Size (KB) 26.6 27.2 28.7 29.6 31.4 

Compression 

Ratio 
2.477 2.423 2.296 2.226 2.099 

No of Iterations 148 261 180 237 124 
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Table II shows that as the number of hidden layer nodes 

increases, the image compression ratio also decreases, 

giving rise to less compressed images, i.e., fewer the 

number of hidden layer nodes, the higher the compression 

ratio. Though the best compression ratio was achieved 

when the hidden layer nodes were set to 50, the image 

quality was inferior as compared to the output image 

formed in Case 5 where the number of hidden layer nodes 

is set to 240. Fig 5 shows the output compressed image of 

Case 5. The first two analyses show that a momentum 

constant of 0.45 and 240 hidden layer nodes gives a 

distinguishable and good quality compressed image. 

 

Fig. 5.  Compressed image formed with number of hidden layer nodes 

set to 240 

B. Effect of Varying Number of Epochs on Compression 

Ratio 

As the previous analyses showed, a value closer to 

10,000 for the number of epochs results in a better quality 

compressed image. Hence, in this set, the number of epochs 

was varied from 11,000 to 14,000 in steps of 1000, and 

finally analysis was also done for a value of 20,000. The 

learning rate was a constant value of 1 for this entire set. 

The momentum constant and the hidden layer nodes were 

also set to a fixed value of 0.45 and 240 respectively. Table 

III summarizes the results of this analysis. 

As clearly observed from Table III, a higher 

compression ratio is observed in Case 5 when the number 

of epochs is set to 20,000, but a better quality image is 

formed in Case 1, when the epoch number is set to 11,000. 

Figure 6 shows the output image of Case 1. 

 

 

 

 

TABLE III 

SIMULATION RESULTS SHOWING EFFECT OF VARYING NUMBER OF 

EPOCHS 

 
Case 1 Case 2 Case 3 Case 4 Case 5 

No Of Epochs 11000 12000 13000 14000 20000 

Hidden Layer 

Nodes 
240 240 240 240 240 

Learning Rate 1 1 1 1 1 

Momentum 

Constant 
0.45 0.45 0.45 0.45 0.45 

Time 

(min:sec) 
03:59 01:42 01:03 01:17 02:41 

Size (KB) 28.6 29.7 31.6 30.2 28.4 

Compression 

Ratio 
2.304 2.219 2.085 2.182 2.320 

No of 

Iterations 
440 222 137 163 343 

 

 

Fig. 6. Compressed image formed with number of epochs set to 11,000 
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C. Results and Discussion 

Through the different analyses sets that were studied, it 

was observed that the quality of the image as well as the 

compression ratio depends on its network parameters – 

epoch number, momentum constant, hidden layer nodes, 

and learning rate. Over the course of this research work, it 

was observed that a sufficiently high epoch number, a 

higher simulation time, combined with a higher learning 

rate, and a sufficient but not too large momentum constant 

resulted in a good quality compressed image. Epoch 

number closer to 10,000 resulted in better quality images, 

and though a value of 20,000 simulated an image that was 

highly compressed, the image quality was severely 

degraded. The analysis showed that a momentum constant 

of 0.45, a learning rate of 1, 240 hidden layer nodes and 

11,000 epochs resulted in a highly compressed and good 

quality image.  

VII. CONCLUSION 

In this paper, artificial neural networks were employed 

for the particular application of image compression. Images 

were given as the input to the network, and various 

compressed images were produced, depending on the 

variation of neural network parameters. In the future, this 

work can be extended to not just images, but also to other 

kinds of data, such as texts, for learning about the 

efficiency of ANNs in data compression.   
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