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Abstract—In this paper we deal with mixed noise reduction 

algorithm for Hyperspectral imagery (HSI). The 

hyperspectral data cube is considered as a three order tensor 

that is able to jointly treat both spatial and spectral modes. 

This entire denoising process is based on the K-SVD denoising 

algorithm. Our work involved in minimizing model to remove 

mixed noise such as Gaussian-Gaussian mixture, impulse 

noise and Gaussian-impulse noise from the HSI data. To solve 

the weighted rank-one approximation problem arisen from 

the proposed model, a new iterative scheme is given and the 

low rank approximation can be obtained by singular value 

decomposition(SVD) and we present a new weighting data 

fidelity function, which has the same minimize as the original 

likelihood functional but is much easier to optimize. The 

weighting function in the model can be determined by the 

algorithm itself, and it plays a role of noise detection in terms 

of the different estimated noise parameters. 

Keyword —Hyperspectral image, K-SVD algorithm, low 

rank approximation, Gaussian noise, Impulse noise, Mixed 
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I. INTRODUCTION 

The „Hyper‟ means „over‟ and refers to a the large 

number of measured wavelength bands. HSI are spectrally 

over determined, which means it provides ample spectral 

information to identify and distinguish spectrally unique 

materials. The development of hyperspectral remote 

sensing technology makes it possible to provide large 

amount of spatial and spectral information for image 

analysis application such as classification, unmixing, 

subpixel mapping and target detection. However the 

acquired images are often distributed by radiometric noise 

such as sensor noise, photon noise calibration error, 

atmospheric scattering and absorption. The noise in these 

images can be categorized into two types: random noise 

and fixed–pattern noise. Fixed pattern noise is mostly due 

to calibration can be mitigated with suitable methods. In 

contrast, random noise cannot be removed entirely, due to 

its stochastic nature.  

The random noise in HSI is the additive model, which is 

assumed to be white, Gaussian and independent-from-

signal. 

The traditional methods employ denoising algorithms 

such as singular value decomposition (SVD) and Wiener 

and wavelet filters, channel by channel. However these 

may lead to loss of the inter-dimensional information since 

they do not deal with the spatial and spectral information 

simultaneously .In recent years, some algorithm combine 

the spatial and spectral information for HSI noise 

reduction. A hybrid spatial spectral derivative domain 

wavelet shrinkage noise reduction (HSSNR) approach and 

spectral- spatial adaptive total variation model for 

hyperspectral image denoising was proposed. 

In multilinear algebra, the HSI data cube can be 

considered as a three order tensor in which the spatial and 

spectral information are completely preserved. Examples of 

such approaches include multidimensional filtering based 

on tucker tensor decomposition. The multidimensional 

Wiener filtering (MWF) algorithm [13] is one of the 

Tucker based noise reduction which achieves simultaneous 

improvement in the image quality and classification 

accuracy. However this application may lead to 

information compression and loss of spatial details. 

In the rank-1 tensor decomposition (R1TD) algorithm 

[24], the input data cube is considered as three order tensor. 

Subsequently, is used to extract the signal-dominant 

component from the observed HSI data cube by sorting the 

eigen values generated by tensor decomposition. The 

signal-dominant components are extracted from the 

observed data cube by sorting the weights of the rank-

1tensor, and then they are reconstructed to produce the 

noise free image. 

In this work, we propose a general framework to 

adaptively detect and remove noise of different type, 

including Gaussian noise, impulse noise and more 

importantly, their mixture in the HSI data. The HSI data is 

considered as a three order tensor which treats both spatial 

and spectral modes of the given image.  
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The image undergoes tensor decomposition; later the 

modified K-SVD algorithm is applied to the tensors. We 

derive our model from the regularized maximum likelihood 

estimation (MLE) of the noise. Since the likelihood 

functional related to mixed noise is not easy to be 

optimized compared with the functional for a single 

Gaussian noise, a new functional with an additional 

variable is introduced. This new functional is easier to be 

optimized and has the same global minimizer (or 

maximizer) as the original likelihood functional. By 

minimizing the new functional, we obtain some weighted 

norms models, in which the weighting functions play the 

role of noise detectors. By integrating this with sparsity 

representation, our model can well restore images and 

textures corrupted by mixed noise. To solve the weighted 

rank-one approximation problem arisen from the proposed 

model, a new iterative scheme is given and the low rank 

approximation can be obtained by singular value 

decomposition (SVD). Our method integrates sparse 

coding-dictionary learning, image reconstruction, noise 

clustering (detection), and parameters estimation into a four 

step algorithm. Each step needs to solve a minimization 

problem. Then these optimized tensors are separated as 

noise free tensor and noisy tensor. The noise free tensors 

are then combined to reconstruct the noise free image. The 

reconstruction is same as reverse of the tensor 

decomposition. 

The remainder of the study is organized as follows. 

Section2 deals with brief review about tensor and its 

operation. Section 3 proposed method and section 4 

provides the experimental results. Finally, section 5 

concludes this study. 

II. BRIEF REVIEW ABOUT HSI AND TENSORS 

A. Spectral image analysis 

To understand the advantages of hyperspectral imagery, 

it may help to first review some basic spectral remote 

sensing concepts. You may recall that each photon of light 

has a wavelength determined by its energy level. Light and 

other forms of electromagnetic radiation are commonly 

described in terms of their wavelengths. For example, 

visible light has wavelengths between 0.4 and 0.7 microns, 

while radio waves have wavelengths greater than about 30 

cm (Fig. 1).Reflectance is the percentage of the light hitting 

a material that is then reflected by that material (as opposed 

to being absorbed or transmitted).   

Some materials will reflect certain wavelengths of light, 

while other materials will absorb the same wavelengths. 

These patterns of reflectance and absorption across 

wavelengths can uniquely identify certain materials. 

 
Fig 1 Electromagnetic Spectrum 

B. Imaging Techniques 

Depending on the number of spectral bands and 

wavelengths measured, an image is classified as a 

multispectral image when several wavelengths are 

measured and a hyperspectral image when a complete 

wavelength region, i.e., the whole spectrum, is measured 

for each spatial point. For example, a RGB image from a 

typical digital camera is a type of multispectral image that 

uses the light intensity at three specific wavelengths: red, 

green, and blue, to create an image in the visible region. 

The Fig 2 compares the optical information obtained by 

monochrome cameras, RGB cameras, and hyperspectral 

cameras. 

 
Fig 2 Differences in imaging 

C. Imaging spectrometer 

Hyperspectral images are produced by instruments 

called imaging spectrometers. The development of these 

complex sensors has involved the convergence of two 

related but distinct technologies: spectroscopy and the 

remote imaging of Earth and planetary surfaces. 
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Fig 3 Imaging Spectrometer 

Spectroscopy is the study of light that is emitted by or 

reflected from materials and its variation in energy with 

wavelength. As applied to the field of optical remote 

sensing, spectroscopy deals with the spectrum of sunlight 

that is diffusely reflected (scattered) by materials at the 

Earth‟s surface. Instruments called spectrometers (or 

spectroradiometers) are used to make ground-based or 

laboratory measurements of the light reflected from a test 

material. An optical dispersing element such as a grating or 

prism in the spectrometer splits this light into many narrow, 

adjacent wavelength bands and the energy in each band is 

measured by a separate detector. By using hundreds or 

even thousands of detectors, spectrometers can make 

spectral measurements of bands as narrow as 0.01 

micrometers over a wide wavelength range, typically at 

least 0.4 to 2.4 micrometers (visible through middle 

infrared wavelength ranges).  

Remote imagers are designed to focus and measure the 

light reflected from many adjacent areas on the Earth‟s 

surface. In many digital images, sequential measurements 

of small areas are made in a consistent geometric pattern as 

the sensor platform moves and subsequent processing is 

required to assemble them into an image.  

D. Tensor 

A tensor, represented as                  is defined 

as a multidimensional array which is the higher-order 

equivalent of the vector (one-order tensor) and a matrix 

(two-order tensor). In this study, the HSI data cube is 

regarded as a three-order tensor             in which 

modes1 and 2 represent the spatial modes and mode 3 

denotes the spectral mode. Taking each vector to be in 

different mode, we can visualize the outer product of three 

vectors as follows, 

 
Fig 4 Tensor as the outer product of three vectors 
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Fig 5 Illustration of tensor matricization of three modes 

Mathematically, we can write the outer product of three 

vectors a; b; c as follows,  

 

We can see that the indexes of the entries in the resulting 

tensor. 

Tensor matricization reorders the elements of an N-order 

tensor into a matrix from a given mode. The n-mode 

matricization of X belongs to R
L1×L2×…×LN 

is matnX belongs 

to R
Li×(L1L2...Ln-1 Ln+1...LN) 

, which is the ensemble of vectors in 

the n-mode obtained by keeping index Li fixed and varying 

the other indices. A visual illustration of tensor 

matricization is shown in Fig 5. 

III. METHODOLOGY 

The given HSI is taken as input to the system. This HSI 

image is read and displayed. Then the HSI image processed 

in the R1TD algorithm to provide the Rank-1 Tensor 

profiles.  

With these profiles, we perform the Alternative Least 

Square Algorithm to optimize the tensors. Then we sort the 

tensors of higher order and reconstruct the noise free image 

by combining signal dominant components. 

A. HSI Image Reader 

The Hyperspectral imaging (HSI) collects and process 

information from across the electromagnetic spectrum. 

Much as the human eye sees visible light in three bands 

(red, blue, green), spectral imaging divides the spectrum 

into many more bands. This technique of dividing images 

into bands can be extended before can be extended beyond 

the visibility. Hyperspectral sensors collect information as 

a set of ‟images‟. Each image represents a range of the 

electromagnetic spectrum and is also known as a spectral 

band. These „images‟ are then combined and form a three 

dimensional hyperspectral data cube for processing and 

analysis. This module is designed to read and visualize the 

HSI images. 

The HSI data is considered as multiple images combined 

as a cube. Thus we have view each image in a well 

furnished manner. Each image ahs slice of images of 

different colors.  
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This slice of image is not taken as a single color image 

for the calculation instead it is taken as whole cube called 

tensors. 

Here, we denote O as the observed HSI data cube 

consisting of the signal-dominant component S and the 

additive noise component N. By extending the classic two-

dimensional additive noise model, the tensorial formulation 

is,  

O=S+N                                                                          (1) 

In this model, the noise is assumed to be white, Gaussian 

and independent from signal. 

B. Tensor Decomposition 

In this module, we develop a new tensor decomposition 

which jointly treats both the spatial and spectral modes. 

The R1TD algorithm is applied to the tensor data input 

which takes into account both the spatial and spectral 

information of the hyperspectral data cube. The tensor 

decomposition is of the form CANDECOMP/PARAFAC 

decomposition (Canonical decomposition and parallel 

factor decomposition). 

The tensor decomposition was first attempted by 

Hitchcock in 1927 and Eckart and Young in 1936. 

However it was not fully introduced until 1970 with the 

work of Harshman about the PARAFAC decomposition of 

Carroll and Chang about CANDECOMP. Both paper 

appeared in Psychometrika and explained the same 

decomposition. The CANDECMOP/PARAFAC is based 

on the fact that tensors can be rewritten as the sum of the 

several other tensors. Since the outer product of the three 

vectors gives a tensor as a result. We shall denote this 

tensor to be of rank 1 and we will use the term “rank 1 

tensor” to denote tensors that can be written as the outer 

product of the vector triple. The 

CANDECOMP/PARAFAC decomposition rewrites a given 

tensor as a sum of several rank 1 tensors. Following the 

argument above, we define a tensor to be rank 2 if it can be 

expressed as the sum of two rank 1 tensors. Similarly, we 

define a tensor to be of rank 3 if it can be expressed as the 

sum of three rank 1 tensors. Thus the definition of a rank of 

a tensor T is the minimal number of rank 1 tensors that 

yield T as a linear combination. 

Based on the definitions of the rank 1 tensor and vector 

outer product, tensor             can be represented 

with the rank-1 tensor decomposition model: 

 

  ∑           
 
                                           (2) 

Where                             are vectors 

(rank-1 tensor in this model) on three modes, and M is the 

number of rank-1 tensors used to restore the whole tensor 

O. Considering    as the weight value, the above implies 

that the HSI data is a linear combination of a sequence of 

rank-1 tensors. However, there is currently no straight 

forward solution to M or the so-called tensor rank. The 

rationale of this problem is explained as follows: The rank 

of a three order tensor is equivalent to the minimal number 

of triads necessary to describe the tensor.  

C. Improved K-SVD algorithm 

We, solve the following with four sub-minimization 

problem. 

1) Sparse Coding and Dictionary Learning: The first 

minimization problem is 

                                                  (3) 

Applying the alternating algorithm again to this 

subproblem, this problem can be split into two convex 

subproblems corresponding to the so-called sparse coding 

step and the dictionary learning step, respectively. Let ν1 

be an inner iteration number, then       and     can be 

obtained by solving the following two minimization 

problems iteratively: 

Sparse Coding (Conjugated OMP) 

                                  
                

         
 

{
 

 
∑ ‖   

            
 ‖

 

 
  

   

                                         ∑   ‖    ‖ 
 
   }                          (4) 

In the above,    is a diagonal matrix whose diagonal 

elements are   .  

Dictionary Learning: (Modified K-SVD) 

The linear structure of K-SVD is significantly changed 

by the non-uniform weights. We denote 

                                                 (5) 

Then  

               ‖  ‖   {‖             ‖ 
 }   (6) 
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Similar to the K-SVD learning algorithm of [13], a 

natural approach to minimize each atom    from following 

energy: 

  
    

        ‖  ‖   ‖            
    

 ‖
 

 
        (7) 

In the above,       ∑   
      

     
       . This 

problem is known as weighted approximation. An iterative 

algorithm [22] to address this difficulty is as follows  

  
    

        ‖  ‖   ‖  (         
    

)  

  
      

    
       ‖ 

 
                                                     (8) 

via SVD. This algorithm cannot be used for the 

unweighted case. Thus we solve the minimization problem 

was: 

  
    

        ‖  ‖   ‖  (         
    

)  

    
      

    
         ‖ 

 
                                              (9) 

To update the atoms, where      
    (

∑   
 
   

 
)   

  . 

Thus the modified scheme reduces the original K-SVD 

algorithm when all weights are the same. 

Incorporating the sparse constraint, we get ourmodified 

K-SVD algorithm for weighted norm as follows: 

1) Select the index set of patches SkThat use atom dk  

   {      
            }                      (10) 

2) Let       
    (

∑   
 
   

 
)   

  , for each image 

patch with index i  Sk calculate the residual 

  
     (   

         
    

)      
      

    
 

                                                                     (11)                                              

3) Set  ̃        |  | with its columns being the 

  
   and update   

    
 by minimizing  

   
    

           
‖  ‖     

‖ ̃       
 ‖

 

 
 

                                                                      (12) 

where     |  |. This rank-one approximation 

can be solved using SVD decomposition of  ̃  

4) Replace     
    

      by relevant elements of β
*.
 

 

In our experiment, we choose the inner iteration number 

     . 

2) Reconstruction: The minimization problem we have to 

solve is as follows, since   is quadratic with respect to f, 

thus 

     (        ∑  
         

 

   

         )

  

 

 (          ∑   
          

             

        
   )                                                                   (13) 

Where        represents           and Ri is a 

diagonal matrix. Thus the inverse matrix can be directly 

obtained. 

3) Noise Clustering (Exception Step): The minimization 

problem we need to solve is uυ
+1 

and it can be computed by 

    
    

  
 

  
          

∑
  
 

  
          

 
   

                                                 (14) 

4) Parameter Estimation: The minimization for this step 

is  

                                                                      
 

                                                                                (15)   

From equation
  

  
  , we get the closed-form solution 

of     : 

                                                                                     (16) 
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D. Denoising 

The signal dominant components are combined leaving 

the noise tensors to the noise free image. After the noise 

components are removed, the signal-dominant components 

are obtained by reconstructing the remaining noise free 

tensor. 

The tensors are reconstructed to form the noise free HSI 

data by the formula 

 ̂  ∑           
 
                                             (17) 

The value of K is the number of signal dominant tensors.  

IV. EXPERIMENTAL RESULTS 

The proposed algorithm is applied in 3 set of HSI data. 

The HIS cannot be taken as an image itself. The values 

are to plotted as an image for our visualization. Thus a set 

of values of the received image is plotted as an image for 

our visualization. The values are plotted as an image for the 

original data and for the Denoised data. The original values 

are not plotted fully, only certain area shown for the 

visualization for a clear idea of the HSI image. The three 

images with their denoised output is shown in figure 6-8, 

 

Fig 6 Data set 1 for HSI image visualization and the Denoised data              

set 1 

 

 

Fig 7 Data set 2 for HSI image visualization and the Denoised data                 

set 2 

 

Fig 8 Data set 3 for HSI image visualization and the Denoised data             

set 3 

To verify the effectiveness of the proposed algorithm, 

the proposed model is compared with several competitive 

methods: Spectral-Spatial Adaptive Total Variation 

(SSAHTV), Multidimensional Wiener Filtering (MWF) 

and Rank-1 Tensor Decomposition (R1TD). The algorithm 

SSAHTV [15] and MWF [13] may lead to loss of inter-

dimensional information since the correlation between the 

spatial and spectral bands are not simultaneously 

considered. The application of a core tensor and n-mode 

tensor product may lead to information compression and 

loss of spatial details. 
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The R1TD [24] provides clear view than that of the other 

two but it deals with only Additive white and Gaussian 

noise. 

The proposed algorithm deals mixed noise like impulse, 

Gaussian-Gaussian, Gaussian-impulse. Also it provides a 

higher PSNR than that of the existing system. 

The PSNR is an engineering term for ratio between the 

maximum possible power of a signal and the power of 

corrupting noise that affects the fidelity of its 

representation. Because many signals have a very wide 

dynamic range, PSNR is usually expressed in terms of 

logarithmic decibel scale.  

The PSNR for the Existing System is compared with the 

proposed algorithm in the Table I. This comparison 

confirms that proposed method is has higher values than 

that of the existing systems. Also the existing system deals 

only with single noise whereas this deals with mixed noise.  

TABLE I 

PSNR COMPARISON FOR THE PROPOSED AND THE EXISTING SYSTEMS 

PSNR Values 

Band 

No. 

MWF SSAHTV R1TD Improved 

K-SVD 

1 24.48 28.40 30.39 36.51 

2 24.66 26.44 30.43 34.42 

3 25.48 28.43 30.43 31.75 

4 24.31 28.21 30.20 33.58 

5 24.73 29.02 29.99 34.36 

6 23.73 27.56 29.52 31.14 

The graph is plotted with the PSNR values provided in 

the table in figure 9. 

 

 

Fig 9 Graph providing the comparison of existing and the Proposed 

system. 

V. CONCLUSION 

We provide a general framework to remove mixed noise 

using the PDF. By combing the sparsity regularization and 

dictionary learning techniques, a novel and efficient model 

is designed to remove mixed noise such as Gaussian-

Gaussian mixture, impulse noise and Gaussian plus 

impulse noise. Also it considers both spatial and spectral 

views of the hyperspectral image thus provide data quality 

in terms of both visual inspection and image quality. 
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