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Abstract—Accurate definition of pathological regions in |. INTRODUCTION
medical images is essential for diagnosis and staging of a
disease, as well as planning and monitoring the response to
treatment. For example, total lesion load computedfrom
segmented multiple sclerosis (MS) lesions in magnetic

Accuratedeynition of pathologicd regions is that ina
medical image isesseritl for diagnasis and staghg of a
disease as well as planring and monitoring the respons to

resonance imaging (MRI) is a key indicator of MS
progression. Fully automatic segmentation methods with
sufficient accuracy have yet to emerge and medical
professionals still spend large amounts fotime manually
outlining 2-D cross sections of the -B target regions. This

paper introduces two new statistical shape models (SSMs) that

combine radial shape parameterization with machine learning
techniques from the field of nonlinear time series analys. We
then develop two dynamic contour models (DCMs) using the

new SSMs as shape priors for tumor and lesion segmentation.

From training data, the SSMs learn the lower levelshape
information of boundary fluctuations, which we prove to be
neverthelesshighly discriminate. The above given approach is
efficient but not effective in case of exact boundary detection
of the Lesion for the given input. Thus to increase the

efficiency and sensitiveness of the current system, the

development of a PVAquantification scheme that is tuned
specifically for MRI with Lesion.PVA is initially modeled with
a localized edge strengthmeasure since PVA resides in the
boundaries between tissues. Thimap is computed in 3D and
is transformed to a global representation to increse
robustness to noise. Significant edges correspon PVA
voxels, which are used to find the PVA fractiorx

the volume of lesions withsubvoxel precision by accounting

for partial volume averaging (PVA) artifact. This technique

does not require any distributional assumptions/parameters
or training samples and is applied on a single MR modality,
which is a major advantage compared to the traditional
methods.

Keyword$® ctive shapemodel, biomedical image processing,
image segmentation, machine lear ning, stochastic processes.

(amafunt
each tissue present in mixture voxels).The method computes

treatmem For example, totd lesian load computed from
segnented multiple sclerosis (MS) lesons in magnetic
reonance imagng (MRI) is a key indicator of MS
progression [1] ard the precise size, pasition and shap
of liver tumors are essentid for targeting radiaheragy to
the right locations and dosage [2].

Fully automatic segmentation methods with sufficient
acaracgy hawe yet to emerge and medical professionals
gtill spend large amounts of time (months or yeas of
reseache time in large clinical trials) manually outlining
2-D cross sections of the 3-D target regions This practie
may be guided by simple edge seking algorithms or the
visudization of an adjustable intensity threshold, but
stetistical shgpe modds (SSMs), which have led to vad
reductions in error and use burden in the inter-active
segnentation of whole orgars and bores, hawe not
trarslated into applications of tumor and lesion
segmentation.

Standad SSMs basel on the PDM popularized by
Cootes et al. [3], represent anobject boundary by anordered
list of position vectors tha correspoml to the same position
among all example shapes This placesrestrictions on the
class of shgpe, as boundalies must bare speci § feaures
or il an &rtha &orrespord betveen all examples
This is not the ca® for pathologicé lesiors in medicd
images becaus of how they form in the hog tissue.
Tumors form through albnormd proliferation of cells due to
genetic mutations. The processis random [4]i [6] and may
be constrained to some extent by surounding structures A
key patology of MS is the formation of localized lesions
in white matter of the brain. Lesiors can form anywhere in
white matter and, like tumors; have no common features on
their boundares.
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Othe SSMs do not use explicit correspondence
points but shae the asumption of spetial
coregpondena through the use of shape alignment
Receatly, Cremes et al. [12] used staistica shape
priors in their segmentation algorithm, which do not use
explicit comespondace points. Howeve, their models
use an implicit shag representaton rathe than
parametric shape boundaries. This removes the need for
explicit corresponden@ points but training shapes are
still implicitly aligned and the modds maintain the
assumption of correspondence

Becaus of ther ladk of shape modds, stat-of-
the-at method for the segnentdion of pahologica
regons are chaacterized by their image models that locate
region bourdaries basel on intensity distributions and
texture. The state of the art is well representd by the
recert i yrmentation challeng® expelimens organized by
the saciety for Medical Image Computing and Computer
Asdsted Intervention (MICCAI), for the chosen
applications of segnenting MS lesiors in MRI [13] and
liver tumors in computed tomography (CT) [14]. For MS
lesions, the most promising method use a pipeline of
contrag enhancement, thresholding and morphological
opertions [15], a probabilistic classiy e based on k-
nearestneighba (KNN) clustering in a featue space that
exploits multimodality imaging [16] ard the treament of
patiological voxels as outliers to intensty distribution
models [17]. Among theseand the rest of the methodsin the
challenge [18], no shge modds are atempted for the
lesiors themsdves whereas atlas-based modek of the
anatomicd structuresin the brain aid the locatian of lesons
in [16], [17]. For liver tumors in CT, the state of the art
incorporates image processing step sud as gradient
y tering and the calculation of intensty statistics/texture
features The mog accurde metha in the chalenge
combined gradient information derived from the
watersted transorm with condraints of neaby voxel
similarity introducel by graph-cut and Markov random
y & (MRF) algorithms.

Il. LANGEVIN AND GAUSSIAN PROCESSSSMS

This secton introduces a new class of SSMIs, which
combineradial time seies representations with standard
modkls of dynamt processes

We preseh two examples, basa on Langevn ard
Gaussian proces modek, which we cal the
Langevn SM (LSSM) and Gaussan procesSSM .

The methods use points defined at regula arclengh

distancesfrom a starting point {*0, %} ona boundary.
In the absene of consisteh features the method in
defines 170 ¥o} relative to an unrelatel anatanical land-
mark outside the tumor. The method in exploits the
aubmatic training algorithm in to optimize for {wo.unt
during i a | memgorof the training shapes In both cases

the startingpoint and therefore all {envi) are arbitrary and
correspndence is merely implicit. Other examples of
automatic alignmert remove the inaccuray ard time
consumption associaté with manua land markng and
can in principle be usedon shapes from ary application.
Howeve, while these methods may assst in modd
training, their goals differ from our own by seekig to
aigntraining dataard therefoe assuming correspondence.
To understand the mativation for semiautomatic methods, it
is useful to look at the two extremesof fully automatic and
fully manual methods. Fully automatic methods can
prodwce he same result for repeatedsegmentations. The
removal of variability can make automatic methods more
reliable for use in longtudinal studies, but places more
demand on the results themselves. In theory, the results of
automatic methods are not affectedby the user. However,
in practicethe unique segmentation presented by automatic
procedures often reguires post editing before the user is
satisfied with the results. Otha SSMs do not use explicit
correspndeance points but shae the asaimption of spatid
correspodene through the use of shag alignment
Recenty, Cremes et abusd statidical shape priorsin their
segnentation algorithm, which do not use explicit
correspndence points Howeve, their models use an
implicit shag representatin rathe than parametric shape
boundaries. This removes the neal for explicit
correspondence points but training shapes are still
implicitly aligned and the modek maintan the assumption
of correpondence.

Becaus of their ladk of shape models stateof-the-art
methods for the segnentation of pathologicé regiors are
chaacterizel by their image modek tha locae region
boundariedbasedon intensity distributions ard texture
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The stak of the art is well representg by the recen
fi egmentation ¢ h a | | expegneedtsorganizel by the
socieyy for Medicd Image Computing ard Compute
Assistal Intervention  (MICCAI), for the chosen
applicatiors of segnenting MS lesions in MRI ard
liver tumors in computed tomograpy (CT). For MS
lesons the most promising methods use a pipeline of
contrag enhancenent thresholdihng and morphologicd
operations a probabilistic classfier based on k-
nearesineighbor(KNN) clusterirg in a featue space tha
exploits multimodality imaging armd the treamen of
pathologich voxels as outliers to intensity distribution
models. Among these and the reg of the methods in the
challenge, no shag modelsare attempte for the lesiors
themselves wheres atlasbasedmodek of the anatanicd
structure in the brain aid the location of lesions. For
liver tumors in CT, the state of the art incaporaes
image processing steps sudh as gradien filtering and
the calculationof intensity statistics/textug feature.
The mog accura¢ methodin the chalermge combined
gradient information derived from the watershd
transfom with constraing of neaby voxel similarity
introduced by graphcut and Markov random field
(MRF) algorithms. Among the® ard the reg of the
methods in the challenge, one introduced a low-levd
shapeconstrairt by penalizingthe deviationof contours
from elliptical form. Howeve, this is not a learnal
shage prior and the methal gawe the loweg accuracy In
summary, shape moddling is lacking from the state of
the art of pathologicallesion segmentation due largely
to their unpredictable form, ard as we lean from
nonpathologich regiors where the PDM is applicable
globd shape priors benefit segmentation

2.1 Langein and Gaussian Process SSMS

This sectio introduces anew class of SSMs which
combine radid time series representatiomwith standard
modek of dynamt processes We presemh two examples,
basedon Langevn ard Gausian proces models which
we cal the Langevh SIM (L-SSM) and Gaussia proces
SIM (GP-SSM), respectively. We first explan how to
construd time series from contours, then presen training,
classfication and generative methods specfic to eadh
methad.

2.2 Radial Time Series

Ore family of shag modek represerg an objed
bounday a a vecta of N radid distance
r = {ro....,7~v-1}. measuredfrom a fixed locatin
Xe =1%o Yo} inside the shag. We refer to this
parameterization generaly as a radial time series where
specfic types differ by the indepemlert variabke that
fi t i0 mepresents One example (usal by, e.g, uses the
boundary arclength s, and we denote this modelby

Q. ={r,s.x.}
= {{rU: e ':rf\"—l}:‘ {‘f"lh R 13_-’\"—1}-: {*'i:("-yc}}- (H

The arclengh parameterizaton can represehary 2i D
shape anotheparaneterization (used by, e.g, [35]) uses
the ande A betwee radid vectors and we denog this
modd by

Qs = {r.80, %}
= {{';r'U: eea TN l-}‘ {0[!\ DR ()A" l-}ﬂ {J;C: ZU{:-H~ (2)

The polar representatin in (2) is limited to the fi tar-
s h a p etdob shapes requiring that ary radid vecta
intersecs with the boundary only once. Degite this
limitation, starshaped modek are sufficient in mary
medicd applicatiors ard star-shapé lesiors make up 80%
of the casedn typical MS lesionandliver tumor data
sets

2.3 Training Data
Training data consist of closed boundaries like the one

in Fig. 1 storel as lists of pixel locatins1#: ¥}, For each
training shapewe autamatically define an intemal point X«

to representa shapds center as follows. For Q. we take
the internd point having maximum closes distance to ary
of the boundawy pixels. In the star-shapé case Qs, we
first identify the intemal points from where all boundaly
points are visible. If no sud points exig we omit the
contou from the starshape set otherwisewe compue
Xe from the centroid of all such points We then measue
radid distances to points arownd the boundarty to form

{r,;s}in (2).
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For starshape boundaries(araund 80% of our datg

we alo form {28} as in (2) and Fig. 1 We therefore
hawe two dat sets one for eadh of the two
paraneterization. One contairs only starshged
boundariesard the other containsall boundaries.

For the new models it is conveniert to work with
series in a zeo-mean field, meanirg tha eadh radiuss is
measurd from a mean or typicd radius For this

purpose we represehead radiuss i as a differen@
from a centrd radiss ¥ tha estmates the mean of the

Subtracting ¥ from a series translats it into the
approxmate zeromean field as in Fig. 1 we separately
store ¥ as a scak paraneter Finally, we resampé all
training series to the same angular or arclength resolution
by fixing N at the maximum number of points of ary
contou in the training set (94 for MS lesions and 279 for
liver tumors). The risk of over- sampling for smaller
contours in the se is acknowledged but its impad on the
models is not apparent Note that the models could be
mace scak invariart at this stage either by dividing all

radi by the scak parameter ¥ or by nomalizing

hypothetich series as’V — 2c.. We use the midpoint _
radial time seriesto a fixed range such as {1, .. +1}.

F= (T.ma.x - Tminj/z betwee the minimum amnd
maximum radius in a series

120 35 ] 10
100 o |

P WV 5
8l il i

y 1 ) 2 S S T L
i 13
40 10 T
X 3 —r(#)
20 7 AL N
0 =
40 60 t{iﬂ 100120 0 T8 ar il T 2
(8) b) ©
Fig. 1. (a) Example training shape showing center x. and scale parameter 7. (b) Corresponding radial time series in polar coordinates. (c) Same time series in

zero-mean field.

2.4Langevin S9M (L-SSM) Switching to the 1-D ca® of radid time series with

The retinal vasculature appears as piecewise linear Staevarable r,the Langevinequationis written
features, \ith variation in width and their tributaries visible

within the retinal image. The concept of employing line d_-‘ — Aly , of

operators for the detection of linear structures in medical ds A {U) T B(r(i)),u(\f.) (3)
images which is modified and extended incorporate the . o
morphological attributes of retahblood vessels. Where denots the independen fi teo

variabke (i.e, sor f)) ard w{t} is uncorrelatd time-
dependen noise of expectatn zera Langevn modek
assume a Markov propery, encodé in the transition
densty

2.4.1 Langevin Models

Langevn modds give a statistical description of the
dynamics of a time-depermert stae vector v(t) & a
stochasti proces and are characterizd by a deteministic

part A(v(t)} known as the drift function ard a stochastic
partZ3(v({}) known as the diffusion function

Pr(r(t}) = Pe{r{t) |r(t — A£}) 4)
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Where At is a constan delay parameter The
transition density evolves accordirg to a Fokkeri Pland
equation The first and secad conditiond momentsinthe
Fokkeri Planck equation de- noted D' ard D**' by
convention, relate to the Largevin drift and diffusion
functions by

A(r(#),8) = lim DEr(), 1 /AL

At—

and
Br(t)t) = i}ﬂlnD[E}(_?‘l{_ﬁ); £/ VAL (5)

2.4.2 Offline Learning

The L-SSM learrs the form and parametersof A(r{%)}
ard B(+(4)}rom training data using a schene adapte
from the dired estimatim methal of Friedrich et al.,
which edimates drift ard diffusion fundions from a
discree approximation of how the ransition densities
vary as a function of the stae variable The methodin
requiresthat a single series contains erough data for

reliable estimation of /*+ and ¥u. For L-SSMs training
shape provide multiple short series rathe than a single
long one We consider ead radid time series as an
instane of the same underlyingstochastt process, so our
algorithm estimates eac condiional probabiity (/w73
from their globd statstics Also, where the trajedory
v(t) — v(t+At) overshats the end of a series at

f = lmax, we use trajectories that wrap around to the
beginningof the seies withou loss of geneality asaradal
time seriesde- rived from closed boundariesis periodic.

2.5Usesin Supervisedsegmentation

Supervis@l segnentaton is initialized by a
single mouseclick to provideanestimatex: of theshape
center Bounday estmates are then calalated to
have plausble shag according to the learnal
information given previowsly, constrainel by evidene
of region edges in the image

An image observatio modd for region edgesis
used by L-SSM and GP-SSM contouring algorithms.
Each algorithm calculatesand displays the optimal
contou in a fraction of a second The usercanrepeat
the initialization if desired but can also refine the resut
usng aposteditng methal.

2.5.1Image Observations

The two SSMs can be constrainal by observationsin
supervied sggmentation, theseobservatioms are evidene
of a shap& bounday, provided by imagedataD ard run-
time use interactios. This section de- fines observatio
modelsin the time series paradgm, given herefor the star

shape cag’(8).

Fig. 2. Observation model from an example synthetic image. (a) Synthetic
shape with boundary given by contour in Fig. 1(a). showing an estimate x| of
center and radial vector at arbitrary angle ¢, . (b) Grey scale representations of
magnitude || (top) and direction 1> (bottom) of image gradient sampled along
radial vectors, with angle #, marked.

The observation modd is built from radid profiles of
both the magnitwle 7] and orientatin %' of the image
gradient. Fig. 2 shows how radal prdfiles are extracted
for the exanple of a synthetc image Given an estimaé
X, of the center point wesample |zl and % in the
direction of the radus (07) at eath observationangle
We rescale the gradiernt magnitue along eachprofile to
the range 0, &nd fitla Gauwssian fundion with mean
GUB7) at the pe& of |9 and variane
by thefull-width at half-maximum.

ob {#7) given
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We use this information to calculae continuous
functiors of radius representiiy the probability of being
on or off a shge boundaly as

pIr) = (7)) = expy [~ (9(r(87)) — 60)7]

and

off off Yy (3‘[9:) — (;‘(9?))2 -
ot — ity ! =1 —¢x A N S
prr) =gy =1 c-xp{ 7O (19)

)

Pr(r(6]}| D) = N(G(8]): 0%(6]))
=1 -p"(r(0])) (20)

2.5.2L-SSM Segmentation Algorithm

We use the data modd in a boundany tracking. First,
we asser tha all observation angles correpond to the
increments d# in (9). The algorithm thenperforms iterative
computation of (11) in the three step of predidion,
weighting and importance sampling. The prediction step
repeas the SDE solution (9) K times at a fixed
observationangk—:y-?, which is equivalert to drawing K
samples from the transtion densityzl'('f‘«cﬂ |7:,a,b) The
weighting step assignsweights wih k=1, K
ead prediction given by

why ) = 5D [ () + (L= Wair(®l,) |r(85).2.b) 2D)

Wher ~ controk the relative influene of shge and
image. The weights w form a discree approximation of

the postrior Pr(rip1 [ri,a.b,D), specific to . We
peform stepwise importane sampling by drawing K
points with replacenert from the poderior. For N
repeitions of step-wise importance sanmpling, terminatirg
to satisly the closad boundary constrant, we get K time
seies We dstore the seaies with the maxmum total
weight, which is the solution specific to the estimatel

. !
centerpoint®:: -,

The algorithm repeas for a smal number of solutions
by drawing cente points from the distribution in (10),
where 82, A% are estimated empirically. The optimal
contour is obtainal by shgpe-wise importance sanpling
by selectng from thes solutions with probaility
proportional to ther total weights. This solution, being

values of continuousr at discree '9 is first transfomed
from polar to Cartesan coadinates ard then discretizel
by taking the nearet intege x and yfor display on the
pixel grid.

Ill. DISCUSSION

Classy ¢ ant expeiments revealal tha the L-SSV
and GP-SSM capgure global information about shape
boundaies and distinguish tumors and lesions from
synthetic shapes with similar radial statistics. Compalisons
with various simple shape de<riptors showed that the L-
SSM and GP-SSM capure more global shape information
than integating local smoothnessaround a contour or
analyzing the frequeng spedrum of boundary
b uuwations. While classycation is not an immediately
obvious role for shape models in pathological region of
interestanalyss, it is used asanindication of model affinity
and motivaton for the use of models in segmaentation
algorithms. For example the circular autoregressive
(CAR) modd has dso been evaduated for sham
classiycation of regionsin biomedical images The CAR
modd struggles to clasify shapes with conplex
boundaies ard intraclass variability. Thislimitation arises
from the lineaity of the CAR mocel as shown by [36],
which may explain the absence of CAR models used in
segmenttion algorithms. The nonlinearity of the L- ard
GP-SSM could accoun for their succes. Extra souces of
within-class variation causel by 2-D slices of tumors and
lesiors at aritrary deptts and orientations throughait the
3-D objects, could cal for nonlinearity in the models In
practice, due to the physics of tomography and the
limitations of digital display systems, both the collection
of training data and the conburing of unseen lesions are
expected to remain in the 2-D domain for the foresesabk
future.

The shge models show promise for reducing
intraoperator variability of lesion contouring, as both L-
SSM ard GP-SSMs reduced the variability in terms of one
or both spatial metrics (DSC and MMD) for two out of
three image types
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Arguably, for some applications reducing intraoperator
variability may be at leag as important as reduéng use
demard or increasig contourirg accuracy Howevae, for
the chosen lesons and con-touring algorithm, reductions in
variability were only apparent for two out of three image
types and were not signiycant. This could be expained by
the high level of control that uses have in postedting,
which overrides same of the ofp ienleaming and
reintroduces human variahlity. More work is needa to
obsewe the effect of the shgpe modds on user-variability, in
contouring tools offering less user-control through post
edting. The interactive DCM algorithms are yet to be
demonstrated for nonstr-shaped models

IV. CONCLUSIONAND FUTURE WORK

Adaboost, Logitbhoost and Bootstrap algorithms renders
better accuracy, ssitivity, and specificity measures than
other stateof-the-art algorithms for both of the DRIVE and
STARE databases. The method computes only nine
features for pixel classification and only four features in the
case of the reduced feature set, thus utijziless
computational time. The performance, effectiveness, and
robustness along with its simplicity and speed in training as
well as in classification, make this ensemble based method
for blood vessel segmentation a suitable tool to be
integrated in to a&complete retinal image analysis system
for clinical purposes and in particular for large population
studies. In future, thaim isto incorporate the vessel width
and tortousity measures into the algorithm and to develop
an interactive vessel analysis saodte tool for
ophthalmologists.
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